発光ダイオード

出典: フリー百科事典『ウィキペディア(Wikipedia)』
青色LEDから転送)
移動先: 案内検索

テンプレート:Redirect

  1. 転送 Template:Right

発光ダイオード(はっこうダイオード、Light Emitting Diode、LED)は、順方向電圧を加えた際に発光する半導体素子のことである。

1962年ニック・ホロニアックにより発明された[1]。発明当時は赤色のみだった。

発光原理はエレクトロルミネセンス (EL) 効果を利用している。また、有機エレクトロルミネッセンス(Organic light-emitting diodes (OLEDs)、有機EL)も分類上、LEDに含まれる。

原理

発光ダイオードは、半導体を用いたpn接合と呼ばれる構造で作られている。発光はこの中で電子の持つエネルギーを直接、光エネルギーに変換することで行われ、巨視的には運動の介在を必要としない。電極から半導体に注入された電子と正孔は異なったエネルギー帯伝導帯価電子帯)を流れ、pn接合部付近にて禁制帯を越えて再結合する。再結合時に、バンドギャップ(禁制帯幅)にほぼ相当するエネルギーがとして放出される。放出される光の波長は材料のバンドギャップによって決められ、これにより赤外線領域から可視光線領域、紫外線領域まで様々な発光を得られるが、基本的に単一色で自由度は低い。ただし、青色、赤色、緑色(光の三原色)の発光ダイオードを用いることであらゆる色(フルカラー)を表現可能である。また、青色または紫外線を発する発光ダイオードの表面に蛍光塗料を塗布することで、白色や電球色などといった様々な中間色の発光ダイオードも製造されている。

特性

電気的特性

他の一般的なダイオードと同様に極性を持っており、カソード(陰極)に対しアノード(陽極)に正電圧を加えて使用する。電圧が低い間は電圧を上げても電流が増えず、発光もしない。ある電圧を超えると電圧上昇に対する電流の増え方が急になり、電流量に応じて光を発するようになる。この電圧を「順方向降下電圧 (VF)」というが、一般的なシリコンダイオードと比較すると、発光ダイオードは順方向降下電圧が高い。発光色によって違うが、赤外では1.4V程度。赤色・橙色・黄色・緑色では2.1V程度。白色・青色では3.5V程度。紫外線LEDは最もVFが高く、4.5から6Vが必要である。

発光時の消費電流は表示灯用途では数mAから50mA程度だが、照明用途のものでは消費電力が数十Wに及ぶ大電力の発光ダイオードも市販されており[2]、最大駆動電流が10Aに迫る製品も存在する[3]

逆方向に電圧を掛けた場合の耐電圧は、通常のシリコンダイオードより遙かに低く、通常はマイナス5V程度である。これを超えると破壊されるため、整流用途には使用できない。

光の特性

蛍光灯白熱灯など他の多くの光源と異なり、不要な紫外線や赤外線を含まない光が簡単に得られる。このため、紫外線に敏感な文化財芸術作品や、熱照射を嫌う物の照明に用いられる。入力電流変化に対する光出力の応答が早く通信などにも利用されるほか、照明に用いた場合は点灯と同時に最大光量が得られる。

なお、紫外線領域に近い紫色LEDでは、紫外線を含む場合がある。

物理的特性

  • 構造が簡単なため大量生産が可能。
  • 価格は赤色LEDで1個5 - 10円程度と安価。
  • 電球と違いフィラメントを使わないため軽量で衝撃に強く長寿命であり、故障の発生する頻度も低い。

駆動方式

テンプレート:節stub 基本的に光量が電流に比例することから、定電流回路や平均電流を一定になるように制御した高周波回路で駆動する。 交流電源はダイオードブリッジなどで整流して利用される。

電流制限抵抗

定電圧電源に接続して使用する場合は、抵抗器直列に接続する事で電流をほぼ一定にできる。

電源電圧を E として電流 I を流すには、適切な抵抗値はおよそ (E-VF) /I となるが、LEDの順方向降下電圧 (VF) には個体差があり、抵抗にかかる電圧が変わるため、実際に製造された製品に流れる電流は設計時に想定した値に比べて多少のバラツキが生じる。

抵抗も電力を消費するため電力効率は良くないが、定電圧電源を用意できる場合には最も単純かつ低コストな回路となる。そのため、発光効率を特に追及しない表示灯用途には多用される。

定電流駆動

定電流ダイオード (CRD) を直列に接続する等、能動素子で定電流回路を構成する事により自動車バイクバッテリー等、電源電圧がある程度変動する環境下でも対応できる。

電源には、LEDの順方向電圧降下に加え、定電流回路の動作に必要な電圧が必要となる。CRDは動作に5から10V程度の電圧を必要とするが、1V程度の電圧でCRDと同等の動作ができるICも利用されている。

回路は単純だが、電流制限抵抗と同様、過大な電源電圧を電力を消費して吸収するため、電源電圧によっては電力効率が悪くなる。

高周波駆動

人間の視覚が認識できない短い時間周期の点滅を繰り返し、見かけ上一定の明るさを得る。明るさは点灯時間のデューティー比を変えるパルス幅変調により容易に調節できる。

駆動回路には電力効率は良いが出力に電流・電圧に変動(リップル)があるスイッチング電源昇圧回路を用いることが可能である。また、出力電流の平均を一定に保つことで、乾電池のように電源電圧が低かったり、変動幅が大きかったり、という場合にも一定の明るさを維持可能である。

駆動回路で消費される電力が他の駆動方式に比べ少なく、入力電力の大半がLEDで消費されるため、電力効率は比較的良い。しかし、電流断続時の急激な電流変化により生じるノイズ放射が機器内外へ電磁妨害を及ぼすほか、回路規模増大に伴ってコスト実装体積が増加する。

使用に必要な知識

  • 発する光の強さは電流の量におおよそ比例する。しかし特に大電流域では効率が低下する。
  • 熱に弱く、80℃以上で素子の劣化が始まるため寿命が縮む。
  • 発熱が少ないとはいえ、高出力品では相応に発熱する。熱に弱いので、放熱の必要性は白熱球や蛍光灯よりむしろ高い。ヒートシンクなどで適切に放熱しないと効率の低下や寿命の短縮で発光ダイオードの利点が失われる他、発煙・発火などの事故に繋がる事がある。
  • 連続最大電流、瞬間最大電流を超えないこと。定格電流より大きい電流を流すと高光束が得られるが、寿命が極端に短くなる。LEDを使用した市販品では、寿命を犠牲にして高輝度を得ている物や価格を抑えるために電流を制限する回路を省いている物もある。
  • 極性があることから、アノードカソードを間違えて印加した場合発光しない。また逆方向に対する耐電圧が低く、破壊されやすい。
  • 並列接続してはいけない[4]。順方向降下電圧 (VF) には個体差があり、並列に繋ぐと最も順方向降下電圧(簡単に言えば、電流が流れ始める電圧)の低い素子のみに電流が集中する。電流の集中でさらに発熱し電気抵抗とVFの値が減少し、さらに電流の集中が促進されるという悪循環が起こる。発光量が不均一になるだけでなく、電流が最大定格を超えれば過熱による寿命短縮や焼損の危険もある。素子の破壊がオープンモードだった場合は、次にVFの低い素子に更に大量の電流が集中し、連鎖的に破壊が進行する。複数のLEDを同時に点灯する場合は、可能な限り直列に繋いだ上で抵抗や能動素子で定電流制御した回路を1単位とし、この単位回路を並列に電源に繋ぐ。ただし、複数の素子が内部で並列接続されている製品もある[5]
  • GaN系などの発光ダイオードは静電気サージ電流に弱い。
  • レンズ付きの発光ダイオードの場合、素子の光軸と実際に放出される光の方向は、製造過程でのばらつきのため通常一致せずわずかにずれている。
  • 他の発光器具にも言えることではあるが直視すると、直視するとに悪影響を与える事がある。特に紫外線や高出力のものはその傾向が強い。

材料

放出された光の波長)は、pn接合を形成する素材のバンドギャップの大きさが関係する。発光ダイオードでは近赤外線や可視光、紫外線に至る波長に対応したバンドギャップを持つ半導体材料が用いられる。一般に発光ダイオードには発光再結合確率の高い直接遷移型の半導体が適する一方、一般的な半導体材料であるケイ素(シリコン)やゲルマニウムなど間接遷移型半導体では、電子と正孔が再結合するときに光は放出されにくい。しかし、黄色や黄緑色に長く使われてきたGaAsP系やGaP系などドープした不純物の準位を介して強い発光を示す材料もあり、広く用いられている。

以下の素材を使用することにより、さまざまな色の発光ダイオードを作り出すことができる。

  • アルミニウムガリウムヒ素 (AlGaAs) - 赤外線・赤
  • ガリウムヒ素リン (GaAsP) - 赤・橙・黄
  • インジウム窒化ガリウム (InGaN) /窒化ガリウム (GaN) /アルミニウム窒化ガリウム (AlGaN) - (橙・黄・)緑・青・紫・紫外線
  • リン化ガリウム (GaP) - 赤・黄・緑
  • セレン化亜鉛 (ZnSe) - 緑・青
  • アルミニウムインジウムガリウムリン (AlGaInP) - 橙・黄橙・黄・緑
  • ダイヤモンド (C) - 紫外線
  • 酸化亜鉛 (ZnO) - 青・紫・近紫外線(開発中)

以下は基板として利用されている。

青色発光ダイオード

青色発光ダイオードは主に窒化ガリウム (GaN) を材料とする、青色の光を発する発光ダイオードである。青色LEDとも書かれる。日本の化学会社、日亜化学工業株式会社が大きなシェアを占めている。他の有力メーカーとしては、豊田合成星和電機などがある。GaN系化合物を用いた発光ダイオードの開発とそれに続く青色半導体レーザーの実現により、紫外から純緑色の可視光短波長領域の半導体発光素子が広く実用化されるに至った。

歴史

発光ダイオードは低電力で駆動することができる光源のため、ディスプレイへの応用が期待されていた。RGBによるフルカラー表示のためには光の三原色(赤・緑・青)の発光素子が必要であるが、このうち1980年代中頃までに純赤色は実用化されていたものの、青色は実用的な高い輝度を出す製品が無かった。また黄緑色は早くから実用化されていたが、純緑色は青色と同じくGaN系半導体材料が用いられるため、純緑色LEDの実用化は青色LEDの登場以降である。これらのことから、発光ダイオードによるフルカラーディスプレイの実現は困難だった。

純青色発光の実現のためセレン化亜鉛 (ZnSe) 系化合物や炭化ケイ素 (SiC) を用いての研究が古くから行われ、ZnSe系による青緑 - 緑色発光ダイオードの開発に至った他、SiCの青色発光ダイオードは弱い発光強度ながら市販もされた。しかしその後、GaN系化合物による青色発光ダイオードが急速に普及したため、現在ではこれらの材料系の技術は白色発光素子や基板などの用途に転用されている。

窒化ガリウムを用いた高輝度の青色LED開発に関して、基礎技術の大部分(単結晶窒化ガリウム (GaN) やp型結晶、n型結晶の作製技術やpn接合のGaN LED)は赤崎勇名古屋大学→現・名城大学教授)、天野浩(名古屋大学教授)等により実現されている。また発光層に用いられているInGaNはNTTの松岡隆志(現・東北大学教授)などによって実現されている。それらの技術を使って製品化したのが日亜化学工業である[6]

2001年8月、中村修二(現・カリフォルニア大学サンタバーバラ校教授)が職務上で1993年11月に発明した(特許法上、職務発明という)「404特許」を巡って元勤務先の日亜化学工業を提訴し、同特許の原告への帰属権確認ないし譲渡対価を巡って係争した(青色LED訴訟)。この訴訟は企業と職務発明者との関係について社会の関心を広く喚起し、日本の発明史上最高金額となる8億4000万円を会社側が支払うことで和解した[7]

2004年12月、東北大学金属材料研究所教授の川崎雅司(薄膜電子材料化学)らの研究チームは価格が安い酸化亜鉛を用いた青色発光ダイオードの開発に成功した。青色LEDの再発明ともいわれている。この成果は同年12月19日付の英科学誌ネイチャーマテリアルズ(電子版)にて発表している。高コストの窒化ガリウムに取って代わる可能性もある。

なお、可視光のなかで青色の光は最も強く網膜障害を与えるという説がある。 テンプレート:See

白色発光ダイオード

ファイル:WhiteLED-Tentou.JPG
白色発光ダイオード(点灯時)

白色LEDとも書かれる。白色光は、可視光線の全域に渡って連続したスペクトルによって実現される光である。発光ダイオードはある狭い範囲の波長のみを発光するため、本来の意味での白色光は実現できない。しかし人間の眼には光の三原色の混合や補色関係にある2色の混合も白色に見えるので、これを白色光の代用とする方法がいくつか考案されている。高効率の白色発光ダイオードはLED照明としても期待されている。

蛍光体方式

青またはそれよりも波長の短い発光ダイオードと蛍光体を組み合わせた方式で、発光ダイオードのチップを蛍光体で覆った構造をしている。これを点灯させると、蛍光による光と蛍光体を透過した光の混合が得られ、蛍光波長や蛍光体の厚さなどを調整することで白色光を得ることが出来る。蛍光体としては、例えばYAG系のものが用いられる。この方式には、単一のチップとパッケージだけで白色発光が実現可能だという利点がある。

蛍光体による発光では、蛍光体が受けた光より短い波長の光は得られないため、白色発光ダイオードの実現には青色発光ダイオードの存在が不可欠だった。この蛍光体方式の開発により、白色発光ダイオードの本格的な普及が始まった。

擬似白色発光ダイオード

現在の白色発光ダイオードの主流であり、一般に青黄色系擬似白色発光ダイオードと呼ばれている。視感度の高い波長である黄色に蛍光する蛍光体と青色発光ダイオードとを組み合わせることによって、視覚上で大変に明るい白色発光ダイオードを実現している。青色発光ダイオードの製造を行っている日亜化学は元々蛍光体の製造メーカーであるためこの方式を得意としている。豊田合成も同方式を用いている。この方式により作成された白色発光ダイオードが、世界初の白色発光ダイオードとされている。擬似白色発光ダイオードの実現は、世界的にインパクトを与えた青色発光ダイオードの発表の後だったため、報道は控えめだったが、業界内では大きなニュースとなった。

擬似白色発光ダイオードは非常に高いランプ効率 (lm/W) の値を有することが特徴であるが、これは決してワットあたりの光として取り出すことのできる放射束が高いわけではない。視感度に比例する全光束に対するエネルギー効率が高いだけであり、放射束の光成分に対するエネルギー効率が良いと解釈するべきではない。つまり人間の網膜にある色を識別する組織である錐体の分光感度は緑色と赤色で大きなオーバーラップを有するため、黄緑色の波長(約555nm付近)にスペクトルを集中すると少ないエネルギーでも明るく感じる(視感度が高い)性質がある。このため、視感度の高い波長にスペクトルを集中した黄色と発光ダイオードの青色とを組み合わせることによって、視覚上では大変に明るい白色発光ダイオードが実現できる。100lm/Wを超えるような白色発光ダイオードはこのようにして実現される。

擬似白色発光ダイオードの演色性は平均演色評価数 (Ra) で76程度と、一般型蛍光灯 (Ra67) と三波長型蛍光灯(同85)の中間に当たる。ただし現行の演色性の評価法は白熱灯や蛍光灯を前提としたもののため、発光ダイオードのように急峻なスペクトルを持つ光源の場合に、演色性が見た目の印象より低く評価される傾向がある。このため、前述のような特性をもつ光源について平均演色評価数がもっと高くなるように評価法を見直す議論もある[8]

高演色白色発光ダイオード

青色発光ダイオードと黄色蛍光体による白色光は透過する青色光の割合を正確に揃えることが難しいため、製造時の色温度の個体差が大きい欠点がある。また、演色性が悪い。特に、赤色や深紅色の発色が悪いという性質を改善するために黄色以外の蛍光体を混ぜて演色性を改善しようとするとランプ効率 (lm/W) が低くなる。これは、白色発光ダイオード開発初期には青色で励起して緑や赤を発する適切な蛍光体が無く蛍光灯用の紫外線で励起される蛍光体が主体だったことと、赤色系の蛍光体を多く配合して赤色領域で多くの光エネルギーを発生させてもこの領域の人間の目の視感度が低いことからランプ効率上の評価が低くなってしまうという理由による。

近年の成果としては独立行政法人物質・材料研究機構がβサイアロン蛍光体の開発に成功し、これを用いることで大幅なランプ効率の向上が得られるとともに赤色や深紅色の発色の問題も解決されつつある。最近ではさらに紫 - 紫外線を発光する発光ダイオードが開発されている(ただし、紫色発光ダイオードは紫外領域に近いため暗く見える比視感度の問題がある)。これにより、蛍光灯同様に多色を励起・発光させ、演色性を向上させた白色発光ダイオードも登場している[9]

3色LED方式による白色発光

その他の白色発光の実現方法として、光の三原色である赤色・緑色・青色の発光ダイオードのチップを用いて1つの発光源として白色を得る方法もある[10]。この方式は各LEDの光量を調節することで任意の色彩を得られるため、大型映像表示装置やカラー電光掲示板の発光素子として使用されている。ただし、照明用には適さないとされる。照明として用いることを考えた場合、蛍光体方式はある程度幅のあるスペクトルなのに対して3色LED方式は赤・緑・青の鋭い三つのピークがあるのみで黄およびシアンのスペクトルが大きく欠落している。3色LED方式の白色発光は光自体は白く見えても自然光(太陽光)の白色光とはほど遠いため、それで照らされた物の色合いは太陽光の場合と異なってくる。

照らされた物の色合いが違って見える理由を説明する。可視光線のうち、

  1. 赤色と緑色の光を反射し他を吸収する物体
  2. 黄色の光のみを反射し他を吸収する物体

があったとする。太陽や白熱電球の光はあらゆる波長の可視光線を含むのでその下では、1は赤色と緑色の光が反射され網膜の赤錐体と緑錐体を刺激して黄色に見える。2は黄色の光が反射され、その光が網膜の赤錐体と緑錐体の両方を刺激して黄色に見える。つまり両者とも黄色に見える。ところが光の三原色の混合で照らした場合、1は赤と緑の光が反射され黄色に見えるが2は赤・緑・青いずれも物体に吸収されてしまい、理論上は黒く見えることになる。実際には完全に黄色の光のみを反射して他の光を一切反射しないという物体はないので黄色いはずのものが黒く見えるほどの極端なことにはならないが、多少色合いが異なって見える。蛍光灯ではこの問題を解決するために5色発光や7色発光のものがあるが、それでも演色性は白熱灯に一歩譲る。

この方式は3つのチップが必要で、見る角度に依存しない均一な発光色を得ることは難しい。さらにそれぞれのチップの要求する電圧が異なるので点灯回路も3系統必要である。しかし蛍光体が発光ダイオードのチップからの発熱で劣化する問題を回避できるメリットがある。また液晶バックライトなど表示用に用いる場合は赤・緑・青の3つの成分しか持たないことが逆に利点になり、色純度の高い鮮やかな表示色を得ることができる。

白色発光ダイオードの課題

発光ダイオードの低い消費電力で大きな光エネルギーを得られるといった特性から、照明用として注目されている。現状では下記の理由により一定以上の大電力・高出力の製品の実現が難しい。

  • 高出力を得るために大電力を投じると発熱が増える。
  • 発熱により高温になると発光効率が落ちる。
  • 発光効率の低下を補うために更に大電力を投じるとますます発熱が増える悪循環に陥る。
  • この悪循環が限界を超えると熱で素子が破壊され、周りの封止樹脂の劣化が進む。
  • 破壊にまで至らなくとも効率が低下し寿命が短縮するため、発光ダイオードの利点が失われる。

今後課題が克服されるにつれ、小電力分野から順に既在の照明器具との置き換えが進んでいくと考えられている。現在、自転車の前照灯懐中電灯では置き換えが進みつつあり、常夜灯、各交通手段での照灯の置き換えも始まっている。

白色発光ダイオードの効率問題

近年、製造技術の向上によって投入電力当たりの明るさが100lm/W(ルーメン/ワット)を超える製品の開発が各社から相次いで発表されている。ただし、あくまでも擬似白色かつ10W程度までの比較的小電力での場合である[11]。一説に白色発光ダイオードの効率が蛍光灯を超え、蛍光灯よりも数十%以上省エネルギーにつながるとも言われているが、これは現在のところ誤りである。そのような誤解が広がった原因は、1998年に制定された経済産業省による国家プロジェクト「高効率電光変換化合物半導体開発(21世紀のあかり計画)」[12]基本計画にて、実用化時点で1998年当時の蛍光灯の2倍程度のエネルギー消費効率を有するLED開発を目標とし、2010年までにLEDの発光効率は蛍光灯(約110lm/W)を超え200lm/Wに達するとした目標設定にある。この目標設定が現在も一人歩きして多くの誤解を生んでいる。同プロジェクトに対し独立行政法人新エネルギー・産業技術総合開発機構の研究評価委員会は「プロジェクトで最終的に開発された白色LED照明光源は、その発光効率は目標値を大きく下回り、プロジェクトの最終成果としては先行する企業の製品に比べて物足り無かた。また、目標が未達の課題を解決するための指針が明確化されなかったこと、生産技術や信頼性についての検討が不十分だったこと、コスト試算がなされなかったことなど、産業技術としての見極めや事業化シナリオが不十分であり、実用化の見通しを評価できる段階に達していない。」と結論付けた[13]

ガリウムの資源問題

インジウムと比較してガリウムの資源は逼迫していない。しかしその産地が主に中国カザフスタンウクライナに偏在し、これら各国のカントリーリスクから半導体材料をガリウムに依存し過ぎることに懸念が広がっている。このため酸化亜鉛やシリコン、炭化ケイ素といった材料による実用的な青色発光ダイオードの実現が急務となっている。

製造

発光ダイオードの基本はPN接合であるが、実際には発光効率を上げるためにダブルヘテロ接合構造や量子井戸接合構造などが用いられ、技術的には半導体レーザとの共通点が非常に多い。製造法としては、基板の上に化学気相成長法によって、薄膜を積み重ねていく方式などが用いられる。

製品の外観

最も単純なものは、発光部を内包する透明樹脂部分と2本の端子からなる。多色のLEDを内蔵したものは、3本以上の端子を持つ。

応用

ファイル:Ichigaya-Station-2005-10-24 3.jpg
3色LED方式(種別部分はフルカラーLED方式)を用いた駅の発車標
東京メトロ有楽町線市ケ谷駅
ファイル:FDD-Cardreader.jpg
動作インジケータにLEDを用いた機器
ファイル:LedSignal.JPG
LEDを利用した信号機。太陽光などの影響を受けにくい
ファイル:West Japan Railway - Series N700-3000 - Destination Sign - 01.jpg
フルカラーLED方式を用いたJRN700系電車のLED式側面行先表示装置
ファイル:SHARP LED Bulbs DL-L601N switch on.jpg
白熱電球の代替として開発されたLED電球

低消費電力、長寿命、小型であるため数多くの電子機器に利用されている。特に、携帯電話のボタン照明などその特性をフルに活かして採用されているといえる。また、1つの素子で複数の色を出せるような構造のものもある。機器の動作モードによって色を変えることができるなど、機器の小型化に貢献している。

当初は輝度が小さかったため電子機器の動作表示灯などの屋内用途に限られていたが、赤色や黄緑色の高輝度タイプのものが実用化されてからは屋外でも電球式に変わり電光掲示板に採用され、さらには駅の発車標などにも使用されるようになった。

高輝度の青色や緑色、それを応用した白色の発光ダイオードが出回るようになってからは競技場のビジョンなどのフルカラーの大型ディスプレイ、電球の代わりとして懐中電灯信号機、自動車のウィンカーブレーキランプ、各種の照明にも利用されている。特にブレーキランプに使用した場合、電球よりブレーキペダルを踏んでから点灯するまでのタイムラグが短いため安全性が向上する。2006年には日本初となる超高輝度LEDを用いた前照灯が、JR東海313系電車で採用された。2012年5月開業の東京スカイツリーでは、夜のライトアップ照明を全てLEDで行っている。

なお、発光ダイオード自体の寿命は長いが使用目的によっては樹脂の劣化による光束低下の進行が早くなることもあり、LED交換が必要となる程度まで光束が落ちた場合に基板の交換も含む大規模なメンテナンスが必要とされるのが今後の課題となる。鉄道車両では、駅での行き先表示としての役目を果たせば良いという考えから、走行中には側面表示が一定の速度に達すると消灯するなど、きめ細かい制御で表示装置の長寿命化を図っているものも存在する。なお、編成前後の前面表示は表示のままであることが多い。ちなみに側面表示は、ドットマトリックスの制御方法から、高速移動中は表示し続けていたとしても表示文字の視認が難しい。

色覚異常によって発光ダイオードの色の見分けが困難となる場合がある。例えば1型2型の色弱の人には赤・橙・黄色・黄緑・緑のLEDは同じ色に見えてしまう。交通信号機では緑を青緑色とすることで色覚異常でも判別できるようにしているが、交通信号機以外でも色覚障害者向けの対策が必要とされる。

光通信

現代の高速通信とコンピュータを支えているのは、LEDである。サーバ内通信から家庭への通信までLEDを使った光ケーブルで行われている。また国内拠点間や海外とつなぐバックボーン(基幹)回線もほとんど光ファイバー(LED使用)によるケーブルが使われている。周波数の高い青色発光ダイオードを使うことにより、簡単に通信容量を約2倍にすることができる。

信号機

近年は、鉄道用および道路交通用信号機での利用も拡大している。省エネルギーで耐久性が高く、また従来白熱電球にカラーレンズを組み合わせて色を表現していた従来のものと違って、クリアレンズを採用しているため疑似点灯現象の防止がなされ太陽光などの影響を受けにくい、とされている。反面、従来の白熱電球式の信号機と違い、交流電源もしくは直流でも半波整流で駆動した場合、発光原理が白熱電球と違い熱慣性がないため電源周波数に合わせて点滅してしまう。そのためタクシーなどに交通事故の証拠撮影用として搭載されているドライブレコーダー録画周期とLEDの消灯している周期が同期してしまうと信号表示の状態が写らず、全部消灯しているように写るなどの問題が発生している。また、色によっては色覚異常(色弱・色盲)の人達には見えにくい事があるため、様々な対策・研究が行われている。

積雪のある地方では、LED信号機の点灯面にが付着して信号が見えなくなる問題が発生している。従来は白熱電球の発熱によって融けていた着雪が、発熱の少ないLEDでは融けずに溜まってしまうためである。着雪の対策として、点灯面が凹凸の無い平面で下向きに傾けてある「フラット型」や、点灯面にアクリル樹脂製フードをかぶせた「フード型」などの着雪防止型LED信号機が開発されている。

電光掲示板・大型映像装置

交通関連

駅の発車案内表示板空港の発車案内板などには従来の反転フラップ式や字幕式に代わり、鉄道車両バス行先表示などには従来の幕式に代わり普及が進んだ。現在でもLED方向幕と呼ばれることがある。

最初に登場したLED表示機は赤色・黄緑色・橙色の3色(橙色は赤色と黄緑色LEDによる)表示方式だった。赤色LEDと黄緑色LEDにより3色目の橙色が表現されているもので、俗に「3色LED方式」とも呼ばれる。ただし、実際は2色のLEDを用いているため、工業製品などでは「2色LED」(2C-LED) とも呼称される[14]。また、白色LEDでの赤色、青色、緑色の3色のLEDを用いた「3色LED方式」とは異なる。

その後、白色LEDを搭載したものや、単色で赤・青・緑、二色混色でシアンマゼンタ、三色混色での白の計7色を表示するマルチカラーLEDとされるもの、さらに高輝度の赤色・青色・緑色LEDによりあらゆる色を表示可能にしたフルカラーLEDのものも登場した。フルカラーLEDは、近年主流となりつつある。ただし、バスの行先表示機では、交通信号機等との兼ね合いもありフルカラー式が認可されておらず、またバスは鉄道ほど種別も多くなく、あまり多くの色を必要としないため、赤色・黄緑色・橙色の「3色LED方式」が主流である。

大型ビジョン

従来、大型ビジョンの発光素子にはCRTVFD光の三原色素子が利用されていたが、青色LEDの進歩によりこれらに変わってLEDが使用されるようになった。他方式に比べコストや輝度が優れており普及が進んでいる。

看板など

店頭看板などでも、従来のFL蛍光管等に代わりLEDモジュールなどのLED製品の普及が進んでいる。看板・サインのサイズの大小化や軽量化とともに故障が少なくコストに優れている。

ディスプレイのバックライト

冷陰極管が発する白色光をカラーフィルタで透過して得られる色()に比べ、RGB3色発光ダイオードが放つ光は色純度が高い。そのため、液晶ディスプレイバックライトの光源を冷陰極管から発光ダイオードに置き換えることによって色の再現範囲を大きく広げることができる。ただし最近ではコストが安くて効率の高い擬似白色LEDが用いられることが多く、この場合は色の再現範囲は冷陰極管と変わらず、広色域タイプの冷陰極管と比べると劣る。また、LEDは点光源のため広い面積を照射しようとするとムラを生じやすく、バックライト用としては携帯機器用の小型ディスプレイに用いられることが主だったが、次第に12インチサイズ前後のノート型パソコンまで採用されるところまで来ている。

大型ディスプレイ用のLEDバックライトとしては、2004年11月にソニーより液晶テレビQUALIA」で実用化された。より一般的に普及が進んだのは2008年からで、各メーカーが上位機種を中心に採用するようになった。LEDテレビとは一般的に、LEDバックライトを搭載した液晶テレビのことである。2011年現在は、低価格化が進み、下位機種でも採用されることがある。エリア駆動対応機種では、映像が暗い部分のみLEDバックライトを消灯するエリア駆動により、液晶ディスプレイの弱点であるコントラストを大幅に拡大できるメリットがある。また超薄型と呼ばれる厚さを抑えた液晶テレビや、ノートパソコンの薄型化でもLEDバックライトが重要な要素となっている。また、LEDバックライトを搭載したエッジ型のディスプレイは、LEDの特性上、CCFL(蛍光管)テレビに比べて消費電力が少ない。

なお、上述の「LEDテレビ」やLEDバックライトを搭載した液晶ディスプレイ全般を指す場合に使われる「LEDディスプレイ」という呼称は、正確には誤用である。液晶テレビのバックライトは発光するための物であり、映像を表示するものではない[15]ためである。発光素子にLEDを採用した「LEDディスプレイ」については下記を参照。

LEDディスプレイ

テンプレート:Main2

発光素子にLEDを採用したディスプレイ。前述の大型ビジョンや街頭広告などではよく見かける。一般家庭用途などのディスプレイには、現状ではあまり開発が進んでいない。

沖データは2009年11月26日に、1.1インチQVGAの高輝度LEDディスプレイの開発に世界で初めて成功したと発表した[16]

また、ソニーが、「Crystal LED Display」を開発中で、2012年のCESで55型フルHDディスプレイの試作機を参考出展している[17]

各種照明用

省エネ、高輝度で長寿命を実現できる白色LEDの開発に伴い発熱によるエネルギー消費の大きい電球に代わり新しい屋内・屋外照明材料として期待されている(LED照明)。デザインや光色なども調節できるため自由度の高い照明が可能になる。現在は既存の照明に置き換わる性能をもった製品が発売されており、懐中電灯、乗用車用ランプ、電球型照明、スポットライト、常夜灯、サイド照明、街路灯道路照明灯などLEDを使用した製品が次々登場している。

E26型、E17型を中心とした白熱電球のソケットに装着可能な「LED電球」は企業間競争などにより大幅に価格が下落した。製品寿命や消費電力を考慮すれば「LED電球」の方が、白熱電球や電球形蛍光灯より低コストであると謳われているが、発売されてからまだ日が浅い商品であり、公称寿命として、各メーカーが謳う40000時間[18]に達した例がほとんど無く、頻繁な点灯・消灯の繰り返しや連続点灯が、寿命に関わる劣化にどう影響を与えるかは未だ検証可能な個体が少なく、未知数である。

明るさや照射範囲などは「LED電球」の型番によって違いがある。より電球に近づけたと謳うものや、広配光を謳うもの、下方向のみのものなど多種多様である。中でも明るさについては、実際の明るさよりも明るいと不適切な表示(優良誤認)を行ったとして、メーカー12社[19]に対して、2012年6月消費者庁景品表示法に基づく措置命令[20]を行った。これにより、「LED電球」の明るさ基準を作る動きが生まれ、業界団体である一般社団法人日本電球工業会により、電球と置き換えた場合、電球の何ワット相当に該当するかを、全光束(ルーメン)が明るさ表示の基準として統一され出された[21]。これにより、加盟会社の電球製品はそれぞれ電球何ワット相当と表示できる基準ルーメンと実際のルーメンに合わせる必要があり、不適切な表示はなくなった。ただし、非加盟会社の製品は、インターネットを通じて販売されることが多く、未だに不適切な表示を継続する例が後を絶たない。

直管蛍光灯(FL40W形等)と同形状・同口金 (T8:G13) の物も発売され、LEDチップ価格の下落に伴いややコストメリットが出つつある。しかし、急速に価格が下落し、電球との消費電力の差も大きい「LED電球」と違い、直管蛍光灯型LEDは、もともと低消費電力の蛍光灯との競争のため、消費電力の差が少なく、価格も高い。カバーに透明と乳白色の2種類があり、直下の照度を重視するなら透明、広い照射角(最大310度のものもある)を求めるなら乳白色のものを選ぶのが妥当である。照明機器としてLED素子1個では充分な光束が得られないため、使用目的に合わせてLED素子を複数個使用して照度を確保している。100個以上のLED素子を使用した製品も珍しくない。ただし、蛍光灯に比べ重量が増すためにソケットが重みに耐えられず落下する危険性があるほか、蛍光灯器具の安定器を取り除く必要があるタイプのものも多い。そのため、日本の大手メーカーなどは器具そのものをLEDユニットにしたものを開発している。

丸形蛍光灯型LEDを使用するシーリングライト等についても、直管蛍光灯と同じく、もともと低消費電力の蛍光灯との競争のため、消費電力の差が少なく、価格も高い。

表面実装 (SMD) タイプのLEDを使用した照明器具を、「SMDライト」等と称して差別化して販売している例もあるが、本質的にLEDと何ら変わりがない。

乗用車のランプ

テールランプは、後続車両へのブレーキ作動の警告として使われる。そのため使用頻度が高く、急激な電力供給と発熱のため寿命が短いが、ランプ切れは事故につながりやすいため、長寿命のLEDが適している。また白熱型照明は発熱に時間がかかりそれがブレーキ作動から点灯までの時間差を生み事故の原因の一つになりうるが、LEDは時間差がきわめて少ない。

乗用車への利用も拡大しており、テールランプに加えアフターパーツとして室内灯やポジションランプ(スモールランプ)などが多く販売されている。光量が足りないためヘッドライトにLEDを採用例はなかったが、2007年5月発売のトヨタ自動車LS600h」には小糸製作所が日亜化学工業と共同開発した(鉄道以外の用途として)世界初のLEDヘッドランプが搭載されている[22]。LS600hのLEDヘッドランプは1つのLEDランプでは光量は足りず3つのLEDランプをロービームとして使用していたが[23]、その後LEDランプ1つあたりの光量が増え、2013年発売の3代目レクサスISでは1つのLEDランプでロービームとして使用できるようになった。LEDヘッドランプは消費電力が少なく光量はHIDより上回っており[24]、各自動車メーカーが採用しつつある。

バイクなどのランプ

オートバイへの利用ではko-zaru仔猿(CKデザイン製)が、ウィンカーとテールランプ、ストップランプに平成15年(2003年)から採用している。小型バイクのためバッテリーの積載容量に制限があり、電力消費の点から採用した。日本では初めてのケースとなる。近年のLEDの性能向上を検証しつつ、ヘッドライトへのLEDの適用を研究しているテンプレート:誰

自転車のランプ

自転車へのLEDの普及率は、自動車のそれに比べて非常に高い。発電機を動かすためペダルをこぐ力が乗り心地に直結するため、消費電力の少ないLEDの使用により軽快な乗り心地になる。また使用電力が低いため、非接触型の発電機を使用することにより、照明による負荷が非常に少なくなる。廉価軽快車などでは相変わらず電球が主流であるが、ハブダイナモ式のオートライトには多く採用されている。この他、前照灯としての役目より、他の自転車や自動車からの被視認性を意識した認識灯や尾灯への応用も多い。

舞台演出用の照明器具として

高輝度LEDを搭載した舞台用照明器具がMARTIN社から発売されている。赤・青・緑(一部製品は白色)の高輝度LEDを搭載することにより一般的なフィラメントを用いた舞台照明と比較して次の利点が挙げられる。

  • 消費電力が圧倒的に低い。
  • 一つの照明につき多くの色を表現できる。シームレスな切り替えでグラデーションも可能である。

これらは一般的なフィラメント式のフレネル舞台照明よりも高価だが、舞台を始めコンサート・ライブ等で多く採用されている事例がある。

電子写真式プリンター内部の感光用光源

電子写真式プリンターとして一般的なレーザープリンターは、レーザー光の出力を直接変化させたり、液晶シャッターで強度を変調した光を、回転するポリゴンミラー(多角形鏡)に反射させて走査したりして、感光ドラム上に走査線を作り出している。光学系には高い精度が要求され、構造上どうしてもある程度以上の走光路距離を確保せねばならず、プリンターの小型化、低価格化は困難だった。

これを解決したのが、LEDアレイヘッドを使用したLEDプリンターである。微細加工したLEDを直線上に数千 - 数万個並べ[25]、感光ドラム上の潜像の1ドット1ドットに対応するLEDで感光書き込みを行う。機械的駆動系(ポリゴンミラー)は不要になり、光学系は単純な収束レンズのみで済み信頼性向上とコスト削減、機器の小型化を実現している。ただし、主走査解像度がヘッドの集積度によって制限される、素子間のばらつき補正が必要、ドラムとLEDアレイが非常に近いために飛散したトナーが付着して出力物のクオリティ安定性に欠けるなどの欠点も持つ。

光通信用光源

駆動電流の変化に対し、光出力が高速応答するという特性を生かし家電製品等の赤外線リモコンTOSリンクを始めとする光ファイバー通信の信号送信機、またフォトカプラ内部の光源に赤外発光LEDが広く使われている。

模型製作・改造用光源として

模型用点灯光源としても、価格低減と共にかつて使用されていた小型電球の代替として使用されるようになってきた。光色の制限から、かつては赤色光への使用が主だったが黄色、白色LEDの開発により前照灯や室内蛍光灯の白色光の再現も可能となった。さらに白熱灯の再現については電球色(淡橙色)LEDの開発により、実際の電球ではサイズや発熱などの理由で難しかった箇所も実感的な光色の再現が可能となった。特に、点灯機構を組み込むスペースが限られ、また部材がABSポリスチレン樹脂などで作られているなど電球の発熱の面でも不利な場合があったNゲージを中心とした鉄道模型の場合、通常のレンズタイプからチップタイプへの移行により構造の小型化により実感の再現に大きく寄与し、これにより従来は実車のヘッドライト構造の関係で製品化が困難だった車種の製品化が実現した。コスト的には従来の電球使用より割高となっても実感的な模型の実現からユーザーに歓迎された面があり、分野としての消費量は少ないながらも実用照明器具での利用に先行して採用されている。また模型用途としては他にカーモデル用ディティールアップパーツやミニ四駆用のタミヤ純正カスタムパーツなど、改造用LEDキットが存在する。

ツェナーダイオードの代用品として

電子回路内の基準電圧源として一般に使われるツェナーダイオードアバランシェ降伏現象を利用しているため、出力電圧にわずかながらノイズを発生させてしまう。通常はフィルタ回路によってノイズを十分に減衰させる設計を取るが、オペアンプをディスクリートで組む場合等、「そもそもノイズが発生しない基準電圧源」を追求して定電流駆動したLEDが使われる事例がある。

小信号ダイオードの代用品として

ディストーションオーバードライブのクリッピング素子として、シリコンダイオードやゲルマニウムダイオードの代わりに使われる場合がある。

脚注

テンプレート:脚注ヘルプ テンプレート:Reflist

関連項目

テンプレート:Sister

テンプレート:映像出力機器
  1. エジソンに続く物語:GEのエンジニア、ニック・ホロニアックのLED発明から50年(GE imagination at work / 原文(英語):2012年8月15日公開)
  2. White LEDs CSM-360 - Luminus Devices, Inc.
  3. White LEDs SST-90 - Luminus Devices, Inc.
  4. 日亜化学工業 LEDテクニカルデータ テンプレート:PDFlink
  5. Z-Power LED P7 Series - Seoul Semiconductor Co., Ltd.
  6. 豊田合成社との和解の件 - 日亜化学工業
  7. テンプレート:Cite web
  8. 財団法人日本色彩研究所『照明用光源(LEDを含む)の演色性評価方法に関する調査研究
  9. テンプレート:Cite web
  10. 製品例
  11. XLamp XM-L LEDs - Cree, Inc.
  12. テンプレート:Cite web「基本計画」の項を参照。
  13. テンプレート:PDFlink
  14. 混在する“3色LED”
  15. 液晶ディスプレイの構造と作り方
  16. テンプレート:Cite web
  17. 大画面・高画質に優れた次世代ディスプレイ“Crystal LED Display”を開発 ~2012 International CESに55型フルHD試作機を出展~
  18. 例 パナソニック社のLED電球
  19. テンプレート:PDFlink
  20. テンプレート:PDFlink
  21. テンプレート:PDFlink
  22. テンプレート:PDFlink
  23. 次世代ヘッドライトはLEDに! All About
  24. 新型「レクサスIS」のLEDヘッドランプは第4世代、消費電力は第1世代の半分以下
  25. 通常の半導体加工のように、1回の加工で数千から数万個ならべる。