出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索

テンプレート:For

(はし、橋梁、きょうりょう)は、人や物が、窪地道路線路などの交通路上の交差物を乗り越えるための構造物である(道路、窪地、線路などを跨ぐ橋は陸橋と呼ばれる)。

乗り越えるものにより、跨道橋跨線橋など、個別の名称で呼ばれることもある。一方、を渡すための橋を水道橋 (aqueduct) と呼び、地上に長い区間連続して架けられている橋は高架橋 (viaduct) と呼ばれる。

歩行者が道路を渡るための歩道橋については横断歩道橋を参照のこと。

歴史

有史以前の橋

橋の起源についてははっきりしたことは判らないが、偶然に谷間部分を跨いだ倒木や石だったと推測されている。その後人類が道具を使うようになってからは伐採した木で丸木橋 (Log bridge, Single log) が造られるようになった。また、木々に垂れ下がっている蔓を編んだ吊橋の原型とされる蔓橋(つるはし、suspension bridge made of vine)や、より長い距離を渡るために川の中で飛び出た石の頂部に丸木を渡したり自然石を積み上げて橋脚を築いたり、杭を打ち込み橋脚にした事も考えられている。

古代の橋

紀元前5世紀から6世紀ごろにはバビロンや中国で石造桁橋が架けられていた。紀元前4000年ごろのメソポタミア文明では石造アーチ橋が架けられている。紀元前2200年ごろ、バビロンではユーフラテス川に長さ 200 m のレンガ橋が架けられた。

ローマ時代に道路網の整備に伴い各地に橋が架けられ、架橋技術は大きく進歩した。現存する水道橋は驚異的な精度を持っている。ローマ教皇は「ポープ」と呼ばれるが、この「Pope」の正式名称である「最高司教:Pontifex maximus」の前半部は「橋:Ponti」と「つくる:fex」から成り立っている。この名前が示すように、古代ローマ時代には橋を架けることは聖職者の仕事であった。中国や日本でも橋は仏教僧侶が架けることが多かった[1]

日本での記録に残っている最古の橋は、『日本書紀』によると景行天皇の時代に現在の大牟田市にあった御木のさ小橋(みきのさおはし)である。巨大な倒木による丸木橋とされている。 人工の橋では同じく『日本書紀』によると仁徳天皇の14年に現在の大阪市に猪甘津橋(いかいつのはし)が架けられたのが最古とされている。 また、僧侶が橋を架けたことが知られている。これは僧侶が遣隋使遣唐使として中国に渡り技術を学んできたことや、救済の一環として土木事業を指導した事による。宇治橋をかけた道昭山崎橋をはじめとする行基の活動、空海(と弘法大師伝説)はよく知られている。一方、当時の律令政府勢多橋などの畿内の要所を例外とすれば、橋の築造には消極的であった。『日本紀略』の延暦20年5月甲戌条には河川に橋が無いことでの搬送が困難な場合にはその度に舟橋を架けるように命じている。

中世ヨーロッパの橋

ローマ帝国が滅んだ後、優れた土木技術は失われてしまった。このため、流失した橋には再建されず放棄されたものも多い。 依然石造りのアーチ橋は造られていたが、この時代に橋を架けたのは聖職者だった。

戦乱の続いた時代では橋は戦略上重要な拠点となるため、守備用の塔が付属して建てられたり、戦時に簡単に壊せるようになっていたものも多い。 ルネサンス期になると扁平アーチが開発され、軽快な石橋が建設されるようになった。

中世・近世日本の橋

律令制度の衰退とともに交通路も衰退し、橋の整備も資力や技術に乏しい現地にゆだねられたため、架橋技術は発達しなかった。更に治水技術の未熟からしばしば発生した雪解けや大雨に由来する増水にも弱く、船橋のような仮橋や渡し舟による代替で間に合わされるケースが多かった。こうした傾向は江戸時代末期まで続き、江戸時代に大河川に架橋がされなかったのも、実際には軍事的な理由とともに技術的要因による部分も大きかった。

そうした中でも特徴的な架橋の例はあり、鎌倉時代においては僧侶の勧進活動の1つとして、重源による瀬田橋や忍性による宇治橋の再建などが行われた。これは人々の労苦を救うとともに架橋を善行の1つとして挙げた福田思想の影響によるところが大きいとされている。安土桃山時代から江戸時代に入ると、都市部や街道においてようやく橋の整備が進められるようになった。江戸時代の大都市には幕府が管理した橋と町人が管理して一部においては渡橋賃を取った橋が存在し、江戸では「御入用橋」「町橋」、大坂では「公儀橋」「町人橋」と称した。また、大陸文化の影響を受けた九州地方では明出身の僧侶如定による長崎眼鏡橋の造営をはじめとする石造りの橋が多く作られ、江戸時代末期に作られた肥後国通潤橋は同地方の石工らによって様々な工夫がされたことで知られている。また、石積みの橋桁と木製のアーチを組み合わせた周防国岩国錦帯橋など、中小河川における架橋技術の発達を示す例が各地でみられるようになった。

産業革命後の橋

産業革命によって生じたを用いた橋が出現する。さらに鉄道網の進展、自動車の普及と交通量の変化に合わせて重い活荷重に耐えられる橋が要求されるようになってきた。また、経済の急速な発展に伴い、経済的で短い工期が重視された。

現代の橋

構造の強さだけでなく、需要に即した規模、気象条件、景観を含めた周辺環境への配慮、ライフサイクルコストの経済性を含めた設計が要求される。

日本全国には約15万7千(15m以上)の橋がある。橋に求められる要件は、橋に掛かる荷重を支えること及び荷重が掛かっても変形が大きくなり過ぎないことである。特に地震台風の多い日本では、地震発生時及び台風通過時の安全性を確保することが重要になる。また、橋には実用性だけではなく、デザイン性も求められる。橋のような大きく目立つ構造物はその地域のシンボルになりうるため、構造物自体の優れたデザイン性や周囲と調和するデザインを有していなければならない。

さらに、莫大に膨れ上がった公共事業費の削減が叫ばれる日本では経済性も重要である。国が直接管理する橋は5年ごとの定期点検が行われているが、7県と1567市町村では橋の点検をしていないことが判明(2007年)していて、2012年4月時点で1378の橋が老朽化により通行止めとなっている[2]高度経済成長期に大量に建設された橋が耐用期間を迎える今日では、維持のやり繰りが大きな課題である。

テンプレート:Main2

一般的な構造

ファイル:Bridge structure 2 NT.PNG
断面(道路橋)
1.全幅(ぜんぷく) 2.有効幅員(ゆうこうふくいん) 3.高欄(こうらん、hand rail) 4.地覆(じふく、wheel guard) 5.歩道、歩道幅員 6.縁石(えんせき、curb) 7.路肩(ろかた)、路肩幅員 8.車道 9.舗装 10. 床版(しょうばん)11.主桁
ファイル:Bridge structure NT.PNG
側面
1.橋長(きょうちょう、bridge length) 2.支間(しかん、span) 3.橋桁(はしげた) 4.支承(ししょう) 5.橋台(きょうだい、abutment) 6.杭基礎 7.橋脚(きょうきゃく、pier) 8.ケーソン基礎 9.直接基礎 10.上部構造(じょうぶこうぞう、super-structure) 11.下部構造(かぶこうぞう、sub-structure)

上部構造

上部構造(Super-structure)は川や道路などを横断する部分であり、車両や人間はこの上、または内部を通過することで橋を渡る。支間長に応じて各種の構造形式が提案されており、橋の外観にもっとも影響を与える部分である(構造別による橋の種類を参照)。桁橋やトラス橋などの場合、主に荷重を受け持つ主桁や主構などと、車両や人などを直接支える路面をつくる床板(しょうばん)、床板を支える縦桁と横桁が主要な部材である。吊り橋斜張橋では主塔やケーブルも上部構造に含まれる。さらに、車両や人などが橋から落下するのを防ぐ高欄(こうらん、欄干・らんかん)や自動車防護柵、照明柱などの付加物、下部構造とをつなぐ支承(ししょう)や道路と橋梁の境にあたる伸縮継手も上部構造に含まれる。

下部構造

下部構造 (Sub-structure) は上部構造を支え荷重を地盤に伝達する役目を持つ。橋台(きょうだい)と橋脚(きょうきゃく)の上に設けられた支承(ししょう)によって上部構造は支持される。橋の両端に設置されるものを橋台、中間に設置されるものを橋脚と呼ぶ。基礎は橋台、橋脚を含めた橋全体の荷重を地盤に伝達する役目を持ち、橋の形式や荷重の大きさ、地盤の状態により直接基礎 (Spread foundation) 、杭基礎 (Pile foundation) 、ケーソン基礎 (Casson foundation) などの形式がある。

橋の種類

形式別

橋の構造形式には以下のような種類がある。なお、主な部材に働く力については、構造力学材料力学力学などの項目を参照のこと。

  • 桁橋 - 2つあるいは3つ以上の支点上に水平に桁を架け、その上あるいは内部を通行する橋。桁には曲げモーメントにより主桁内部の上側に圧縮応力が発生、下側に引張応力が発生する。材料にはコンクリート木材などが用いられ、I形、箱形、T形などの断面がある。一般に荷重を主として負担する主桁と通行路を造る床版は異なる部材だが、比較的小規模のコンクリート橋では床版が主桁としての役割も果たす床版橋(スラブ桁橋)もある。また、吊橋の桁は補剛桁と呼ばれる。

テンプレート:-

  • トラス橋 - 棒状の部材を三角形に組み合わせ交点(格点と呼ぶ)をピンで結ぶトラス構造を用いた橋。トラス部材には軸力(圧縮力または引張力)のみが作用する。ただし、実際にはピン結合ではなく剛結とすることが多く、この場合トラス部材には曲げモーメントも作用する。材料には鋼や木がよく用いられる。トラス構造は、使用部材を減ずる目的で断面2次モーメントを極大化させるため、桁構造と比して鉛直方向に構造が大きくなる。特に下路式の場合は、構造下面と路面や軌道面との間の高さを減ずることが可能であることから、桁下に余裕の無い箇所や取り付け部での縦断勾配の得づらい箇所での採用例も多い。トラス部材の配置によって以下のような分類がある。平行弦ワーレントラス、曲弦ワーレントラス、垂直材付きワーレントラス、プラットトラス、ハウトラス、Kトラス。

テンプレート:-

  • アーチ橋 - 上向きの弧(アーチ)を用いた橋で、アーチ(アーチリブ)には大きな圧縮力と比較的小さな曲げモーメントが作用する。コンクリートや鋼あるいは木のほかに、近代以前ではがよく用いられていた。

テンプレート:-

  • ラーメン橋 - 橋脚主桁が剛に結合された骨組(ラーメン)構造を用いた橋。ラーメンはドイツ語 Rahmen に由来する。部材には軸力、せん断力と曲げモーメントが作用し、材料としてはコンクリートあるいは鋼が用いられる。構造力学の観点からは、ラーメン構造は力のつりあい方程式の数より未知反力の数の方が多い不静定構造である。これにより過大な荷重によってある部材が大きく変形しても落橋は免れたり、橋脚上に支承がなく上部構造がずれ落ちたりすることがないため耐震性の高い構造と考えられている。

テンプレート:-

  • 吊り橋 - ケーブルロープなど曲がりやすいが引張強度が大きい部材から桁あるいは床版を吊り下げた橋を呼ぶ。近代以降の大規模な吊橋は、両岸に大きな質量を持つアンカーブロックやアンカレイジと呼ばれる橋台とその橋台の間に2本以上の主塔を設け、その間に張り渡したケーブルから通行路となる桁を吊り下げる形式を採る。このような吊橋では、桁および荷重の全ては、ケーブルおよびケーブルから下げられたハンガーが受け持つため、桁自体は通行路として橋の形状を保つ程度の剛性があれば十分なことから補剛桁と呼ばれる。ケーブルには引張力、主塔には圧縮力が作用する。アンカレイジはケーブルに生じる引張力に対してその質量および底面の摩擦力によって抵抗する。なお、主塔とケーブルが接触する主塔頂部のサドルの形状を固定式とする場合、荷重の偏在によっては主塔に曲げ応力が生じる場合があるので留意する。ケーブルには高強度の鋼、主塔には鋼やコンクリートが主に用いられる。橋台から床版を直接吊り下げる「吊床版橋」がある。アンカレイジを用いず桁の両端でケーブルを固定する「自碇式吊橋」「自定式吊橋」という形式もあるが、橋桁に大きな圧縮力が働くので設計が複雑になる。
  • 斜張橋 - 吊り橋の一種であるが、主塔上部から斜めに伸びた多数のケーブルが橋桁などの鉛直荷重を受け持つとともに、桁に対して圧縮力となる軸力を導入する。ケーブルには引張力が生じるため、鋼製。主塔には圧縮力がはたらき、桁には曲げモーメントと軸力が作用するため、コンクリートが用いられることが多いが、軟弱地盤の場合は主塔にも鋼構造が用いられる。また、多々良大橋のように、主塔の設置箇所の制限から、中央径間と側径間との延長のバランスが悪い場合、主塔に曲げ応力が生じるのを回避するため、単位長さ重量の大きいコンクリートと小さい鋼とを組み合わせた複合構造を用いることもある。ケーブルの張り方によって、主塔側面の異なった高さから斜め平行に張られる「ハープ」と主塔上部の一点から放射線状に張られる「ファン」の2つの形式があるほか、張る面を桁中央(道路の場合は中央分離帯)に寄せる1面吊り、桁側端に分離する2面吊り、1面に2条近接させる形式等、さまざまなバリエーションがある。[1]
  • エクストラドーズド橋 - 外ケーブルを用いたプレストレストコンクリート橋の一種。比較的高さの低い主塔から斜材(外ケーブル)により主桁を支持する構造。外ケーブルが構造断面の外側に飛び出していることから『大偏心外ケーブル構造』とも呼ばれる。外観は斜張橋に類似しているが、主桁の剛性が高く構造としては桁橋に近い。また、斜材ケーブルの角度が小さいことから、活荷重の影響によって斜材の張力変動が小さく疲労に対して有利であり、斜張橋に比べ斜材ケーブルの張力を高く取ることができる。さらに低い主塔と相まって、建設コストを低く抑えることができ、近年は鉄道、道路を問わず、採用例が増加している。

材料別

主要構成部材の材料により、以下のような種類がある。

  • 鋼橋 - 橋の上部構造にを用いた橋。鋼はコンクリートに比べて比強度が高い、すなわち橋を軽くすることができるので、支間長の長い橋には鋼がよく使われる。
  • コンクリート橋 - 橋の上部構造がコンクリート製の橋。コンクリートは圧縮強度に比べて引張強度がおよそ 1/10 と低いため、引張応力を鋼材で負担する鉄筋コンクリートや、PC鋼材によりあらかじめ圧縮力を与え引張応力を打ち消すプレストレスト・コンクリート(PC)を用いる。近年のコンクリート橋はアーチ橋やごく小規模なものを除き、ほとんどがPC橋である。
    • 鉄筋コンクリート橋(RC橋)
    • PC (Prestressed Concrete) 橋
    • PPC (Partialy Prestresssed Concrete) 橋 - PC橋のうち、ある程度の引張応力を許容する構造の橋。
    • PRC(プレストレスト鉄筋コンクリート)橋 - PPC橋のうち、ある程度のひび割れの発生を許容する構造の橋。日本において用いられる区分である。
    • 竹筋コンクリート橋(BRC橋) - 鉄筋の代わりにを用いた橋。竹材資源の豊富な東南アジア地域で見られるほか、鋼材が不足していた戦時中の日本でも架けられている。
  • 木橋 - を用いた橋。橋の材料として古来から用いられており、現在でも人道橋など荷重強度が小さな橋を中心に架設例がある。特に1990年代以降は、従来の無垢材に加えて集成材の利用が進み、以前の伝統的木橋と区別して「近代木橋」と呼ばれることもある。このほか、鉄筋コンクリートや鋼材、繊維強化プラスチックなどとの複合橋も架設されている。橋梁形式としては、桁橋、トラス橋、アーチ橋を中心に各種の形式がある。
  • 土橋 - 木橋の橋面を丸太で作り、上を土でならした橋。簡素である。
  • 氷橋 - 「すがばし」と読む。北海道開拓の初期から戦後にかけて見られた。凍結した川に丸太や枝などを敷いて雪を載せ、水をかけて凍らせる。氷でできた橋。
  • 石橋 - を用いた橋。石材は材料の入手が容易であることから、古くから橋の材料として用いられてきた。他の材料の進歩により近代以降は採用事例が減っているが、耐食性が高いため現存する橋も多く、地域の文化的遺産として扱われる事例もある。石材は他の材料と異なり、個々の材料を相互に連結することができない。したがって、断面に引張応力の生じる桁橋には小規模な橋を除き採用事例は少なく、断面に絶えず圧縮力が作用するアーチ橋にその用途がほぼ限定される。
  • 複合橋 - 異種材料や異種部材による合成構造あるいは混合構造を用いた橋。一般には、鋼部材とコンクリート部材を組み合わせた上部形式を指す。
    • 合成構造 - 古くから、床版を鉄筋コンクリート、主桁を鋼桁とした合成桁橋が古くから用いられてきたが、構造形式としてきわめて一般的であり、合成構造には含めないことが多い。近年の形式としては、
      • 鋼合成桁橋 - PC床版と鋼桁を組み合わせた橋
      • 波形鋼板ウェブ橋 - PC箱桁橋のウェブ部材に波形上に加工した鋼板を用いる橋
      • 鋼複合トラス橋 - 上床版・下床版をコンクリートとし、鋼部材による斜材を組み合わせたトラス橋
    • 混合構造としては、多径間の一部が鋼桁、他がコンクリート桁からなる橋などがある。コンクリートの他に炭素繊維ガラス繊維など比較的新しい材料を用いた複合橋も提案されている。

機能別

橋はその果たす機能により様々な名称が用いられる。大きな区分として通過交通による分類、すなわちその橋が何を渡すものであるかが挙げられる。 人車の交通に限らず物体の輸送用として、専用・兼用で用いられる事も多い。

用途による橋の呼称
通過交通
および総称
道路 歩道 鉄道
道路橋 人道橋
(歩道橋)
鉄道橋
川・谷・海を渡る 橋・橋梁 橋・人道橋 橋梁
道路を渡る 跨道橋 横断歩道橋 架道橋
鉄道を渡る 跨線橋 跨線橋 線路橋

陸上交通

一般的な橋として、道路交通(自動車)を渡す道路橋、人を渡す人道橋(歩道橋)、列車を渡す鉄道橋などがあり、さらに何を渡る橋であるかによって右表に示す呼称が使い分けられる。

道路と鉄道の双方を渡す橋もあり、鉄道道路併用橋(併用橋)と呼ばれる。

水上交通

水路橋のうち、特に運河を立体交差させて河川舟運に用いる橋。ヨーロッパで多く見られる。

現在、世界最長とされるのはドイツマクデブルクにあるマクデブルク水路橋(de:Wasserstraßenkreuz Magdeburg)で全長918m、エルベ川を跨いでハーフェル運河とミッテルラント運河を接続する。なお、ミッテルラント運河はミンデンでもヴェーザー川を渡っている。

輸送用

古代ローマの水道橋など、水利目的の水路橋が古くから建設、利用されてきた。現在は主に上水道用の水管橋[3]が用いられる。

その他、各種パイプライン輸送用の橋としてガス導管橋や石油パイプラインの橋が、港や工場でスクリュコンベアや気流輸送管による原材料・半製品の輸送が行われている。大規模な鉱山では鉱石運搬用ベルトコンベアが、道路や河川を横断する光景を目にする。 また、電線路専用橋として多摩川専用橋がある。

特殊な橋

  • 可動橋 - 河川上を船が通過するときに橋の一部が動くことで航路を確保している橋。架橋技術の進歩で桁下の空間が大きくとれるようになったので新規の架橋は少ない。形状によりさらに旋回橋、昇開橋、跳開橋、引込橋、等に分類される。
  • 運搬橋 - 可動橋と同様、航路を確保するために考えられた形式。非常に高い位置に橋をかけ、そこからワイヤーで吊したゴンドラを行き来させることで人や荷物を対岸まで輸送する。現存数は非常に少ない。
  • 浮橋 - 舟橋、浮体橋とも。鎖やロープで繋いだ舟を並べ、その上に橋桁を設置する。現在の日本ではあまり見られない形式だがアメリカ合衆国やノルウェイで大規模な施工例がある。速やかに架橋でき、いざというときには撤去も簡単なので軍事目的での利用も多い。
  • クローバー橋 - 中央部は通常の橋と同じく一本になっているが両端は二方向に分離し、上から見ると「 X 」のような形状の橋。釧路市にある旭跨線橋(4車線路)、仙台市にある宮城野橋(X橋。現在はy字型)、東京都隅田川に架かる桜橋が代表例。
  • 家屋付きの橋 - 旧ロンドン橋、ポンテ・ヴェッキオ(ベッキオ橋)
  • 屋根付きの橋 - 橋の構造材の劣化速度を遅くする目的で覆いをかけたもの。
  • 橋上駅 - 鉄道駅の一種で、プラットホームの上に駅舎があり、跨線橋と一体化しているもの。
  • 二層通路橋Double-decker bridge) - 上下層で方向を別にしたり(ジョージ・ワシントン・ブリッジなど)、道路と鉄道の併用にしたりするもの(鉄道道路併用橋)。
  • 鉄道道路併用橋 - 鉄道道路が一つの橋を共用するもの。
  • 橋上店舗 - 川に架かる橋の上が店舗になっているもの。日本に現存するものでは渋谷川の上にある東急百貨店東横店東館がその代表例である。
  • 橋上市場 - 岩手県釜石市鈴木東民市長の主導により、河川法の特例許可を受けて甲子川(地元では大渡川と呼ばれた)に架かる大渡橋に並行する形で1958年に完成した全長 110 m 、全幅 13 m の市場。1965年の河川法改正により営利目的の河川占有が認められなくなり、市場内店舗は2003年1月5日に全店閉店、代替施設として建設された「駅前橋上市場 サン・フィッシュ釜石」へ移転し、その後解体された[4][5]
  • ループ橋
  • 門橋 - 陸軍が河を渡る際に使用。
  • 流れ橋 - 洪水の際に、橋桁が流される構造の橋。上津屋橋など。
  • 八つ橋 - 公園施設などで池の上に折れ曲がる形(あるいは四方八方に延びる形)で設置される木製の橋。

橋の長さ

工学的に橋の長さを議論する場合、橋全体の長さを表す「橋長」ではなく2つの「支承」間の距離である支間(しかん、span、スパン)を用い、特に最も長くなる事が多い中央支間の長さが問題とされる。高架橋のように支間長の短い橋を連続させれば橋長の長い橋は容易に造れるが、長い支間の橋を建設するには高度な技術が必要となるからである。

記録

世界最長の橋

日本最長の橋

世界の著名な橋

有史以前

  • 天然橋 - 天然の橋。雄橋(日本・広島県)、プレヒシュ(スイス)、ロックブリッジ(アメリカ合衆国)が世界三大天然橋として有名。

古代

中世・近世

近代~現代

崩落した橋

日本の主な橋

伝統的な橋

伝統があるか、または伝統的な構造をもつ橋。

近代的な橋

近代以降に近代的な技術を使って新設された橋。

その他様々な橋

  • 旭跨線橋(北海道釧路市) - 国内最大規模のクローバー橋。通常クローバー橋は橋脚への負荷が大きいため人道橋が多いが、旭跨線橋は自動車道が片側2車線ある4車線路を有しており世界的にも例がない。完成当時は世界最大であった。
  • 小田原ブルーウェイブリッジ(神奈川県)- 世界初のエクストラドーズド橋。
  • 浜名大橋(静岡県) - 張出架設で施工された建設当時世界最大の支間長を誇ったPC桁橋。
  • 犬山橋犬山市) - 2000年3月27日まで道路橋の中央を線路路面電車のではなく、れっきとした鉄道の)が通る、珍しい鉄道道路併用橋だった(現在は鉄道専用橋)。
  • トゥインクル揖斐川橋・木曽川橋(三重県桑名市) - 世界初のPC・鋼複合構造エクストラドーズド橋伊勢湾岸自動車道の橋梁。
  • ヴィーナスブリッジ神戸市) - 8の字型螺旋橋。夜景がすばらしい。
  • 沈下橋 - 潜水橋、潜り橋、潜流橋などともいう。沈下橋は四国四万十川流域で、潜水橋は徳島県/吉野川などで使われる呼称。増水時には水に沈む。
  • 天草五橋(熊本県) - 日本のマイカーエイジが始まる時代に近代的な橋を先駆け的に作り、テストとして、種々の種類の橋を作った。有料道路から予定より早く無料になった。離島天草の生活も変わった。
    • 一号橋(天門橋) 全長:502m 工法:連続トラス 二号橋(大矢野橋) 全長:249m 工法:ランガートラス 三号橋(中の橋) 全長:361m 工法:PCラーメン 四号橋(前島橋) 全長:520m 工法:PCラーメン 五号橋(松島橋) 全長:178m 工法:パイプアーチ
  • 大甲橋(熊本市)- 天井川の白川に架かっているが、昭和28年の白川洪水(昭和28年西日本水害)の濁流に耐えた。

崩落した橋

文化

古来より橋は人の流れの中継点となり、文化の要素を生み出してきた。

歌に登場する橋

伝承・伝説に登場する橋

小説・随想・評論に登場する橋

映画・放送番組などに登場する橋

  • 君の名は』ラジオドラマ・映画など:数寄屋橋でのすれ違いを描く
  • ポンヌフの恋人」 - フランス映画。ポンヌフはパリ市内セーヌ川に架かる橋。
  • 戦場に架ける橋」 - イギリス映画。クワイ川マーチが有名。
  • レマゲン鉄橋」 - アメリカ映画、第二次世界大戦欧州西部戦線におけるライン川のルーデンドルフ鉄橋をめぐる攻防戦を描いた作品。
  • 遠すぎた橋」 - アメリカ映画、第二次世界大戦欧州西部戦線におけるオランダのアーンエム橋をめぐる攻防戦を描いた作品。
  • 橋(1959年/ベルンハルト・ヴィッキ監督) - 第二大戦末期を舞台に橋梁を守るドイツ少年兵達の悲哀を描いた作品。
  • 哀愁」 - アメリカ映画、第二次世界大戦に巻き込まれた男女の悲恋を描いた作品。原題は「Waterloo Bridge」である。

参考文献

関連項目

テンプレート:Sister テンプレート:Sister

脚注・出典

テンプレート:脚注ヘルプ テンプレート:Reflist

外部リンク

テンプレート:河川関連

テンプレート:Link GA テンプレート:Link GA

new:ज्याभः
  1. 1.0 1.1 大野春雄監修『橋 HASHI なぜなぜ読本』山海堂 2000年5月20日 第1版第3刷発行
  2. 「JAF Mate 2013-3」 P19-P26 橋にまつわるQ&A
  3. 水管橋 日本水道鋼管協会
  4. 鎌田慧『反骨 鈴木東民の生涯』(講談社, 1989年)
  5. サンデー毎日(2003年3月2日号)「消えゆく光景・釜石橋上市場」