ガラス
ガラス(硝子、オランダ語:glas、英語:glass)という語は、物質のある状態を指す場合と特定の物質の種類を指す場合がある。
- 昇温によりガラス転移現象を示す非晶質固体[1]。そのような固体となる物質。このような固体状態をガラス状態と言う。結晶と同程度の大きな剛性を持ち、粘性は極端に高い。非晶質でもゴム状態のように柔らかいものはガラスとは呼ばない。詳しくは「ガラス転移点」を参照のこと。
- 古代から知られてきたケイ酸塩を主成分とする硬く透明な物質。グラス、玻璃(はり)、硝子(しょうし)とも呼ばれる。「硝子」と書いて「ガラス」と読ませる事もよくある。化学的にはガラス状態となるケイ酸化合物(ケイ酸塩鉱物)である。他の化学成分を主成分とするガラスから区別したい場合はケイ酸ガラスまたはケイ酸塩ガラスと言う。石英ガラスも含まれる。本項目ではこの物質について主に記述する。
- ケイ酸塩以外を主成分とする、ガラス状態となる物質。ケイ酸ガラスと区別するために物質名を付けて○○ガラスと呼んだりガラス質物質と呼んだりする。アクリルガラス、カルコゲンガラス、金属ガラス、有機ガラスなど。
語源的にはケイ酸塩ガラスの固体状態を他の物質が取っている場合をもガラスと呼ぶようになったものである。日本語のガラスの元になったオランダ語glasの発音は、英語のglass同様グラスに近いが(より近いカタカナ表記は「フラス」。オランダ語のgはのどを震わせる発音。英語・ドイツ語とは異なる)、日本語化した時期が古いため、ガラスとなった。日本語での「グラス」は多くの場合はケイ酸塩ガラスでできたコップの意味になる。
ガラスには多くの種類があるが、その多くは可視光線に対して透明であり、硬くて薬品にも侵されにくく、表面が滑らかで汚れを落としやすい。このような特性を利用して、窓ガラスや鏡、レンズ、食器(グラス)など市民生活及び産業分野において広く利用されている。近代以前でも装飾品や食器に広く利用されていた。また金属表面にガラス質の膜を作った「琺瑯(ほうろう)」も近代以前から知られてきた[2][3]。
ガラスの表面に細かな凹凸を付けたすりガラスや内部に細かな多数の空孔を持つ多孔質ガラスは、散乱のために不透明である。遷移金属や重金属の不純物を含むガラスは着色しており、色ガラスと呼ばれる。
2002年(平成14年)の統計によれば日本だけでも建築用に3,900億円、車両用に1,700億円、生活用品に3,000億円、電気製品等に8,300億円分も出荷されている[4]。
目次
組成・構造
不規則網目構造説と微結晶説
ガラスの構造については2つの説があり、現在でも論争がある。不規則網目構造説では原子配列が結晶のように規則的でなく、不規則になっているという説である。この説はZachariasenによって提唱され[5],Warren[6]、Sun[7]を始め多数のガラス研究者によって支持され、現在に至っている。それに対し微結晶説は、ガラスは大きさ20Å以下の微結晶から成るとする説である。この説はRandallによって提唱され[8]、Porai-Koshitsによって修正されたもので[9]、ガラスの中で微結晶は非晶質のマトリックスによって繋がれているというものである。
ガラス形成無機物の分類
ガラスの原料は、多くの場合は酸化物であるか高温で酸化物となるものである。 Rawsonによれば,無機物質は以下の3つに分類できる[10]。
- 単独でガラス化するもの(Conventional Glass Former, CGF)。
- 単独でのガラス化は困難であるが多成分とすることによりガラス化するもの(Non-conventional Glass Former, NCGF)。
- まったくガラス化しないもの(Modifier, MOD)。
ガラスとアモルファスはほぼ同義のものとして捉えてよい場合が多いが、ガラス転移点が明確に存在しない場合をアモルファスと定義するような場合(分野)もある。ガラス転移とは主緩和の緩和時間が100s〜1000sの温度で起こる。
ガラスと同じ構造、すなわちガラス化する物質は珍しくない。ヒ素やイオウなどは単体でガラス化する。酸化物ではホウ酸 (B2O5) 、リン酸 (P2O5) などが二酸化ケイ素の代わりに骨格となってガラスを形成する。ホウ酸塩ガラスは工業的に重要である。例えばパイレックスガラスは重量比で12%のホウ酸を含む。
Zachariasen則
テンプレート:Main Zachariasenはガラスを形成するために満たすべき条件を提案した。
ガラスの作り方
溶融法
溶融法は、固体の原料を高温で加熱することで溶かして液体状態にした後、冷却してガラスにする方法である。ただし液体状態から結晶化が起こらないような十分に速い速度で冷却しなければならない。溶融法はガラスの製法としては最も一般的なもので、大部分のガラスはこの方法によって合成されている。使用済みのガラス製品を破砕して原料(カレット)として再利用することもできる。
気相法
気相法は、固体を物理的に蒸発させて薄膜や微粒子を得るPVD法と、気体原料から化学反応によって薄膜や微粒子・バルクを得るCVD法に分類できる。
PVD法では、真空蒸着やスパッタリングが知られている。真空蒸着は、蒸着する物質を減圧下で加熱気化し、基板にコートする方法である。スパッタリングは減圧下で電極間で放電させ、放電によってイオン化されたガスとターゲットとの衝突によって叩きだされた物質を基板にコートする方法である。
CVD法により得られるバルク体のガラスで最も大量に製造されているのは、光ファイバー用シリコンガラスである。光ファイバーの製造法には、MCVD(modified CVD)法、OVD(outside vapor deposition)、VAD法(vapor-phase axial deposition method, 気相軸付け法)など様々な方法がある。VAD法では、気体のSiCl4を加熱基板上で反応させて酸化物を堆積し、焼結してガラス化する。
ゾル・ゲル法
ゾル-ゲル法では、例えばテトラエトキシシラン (Si(OCH2CH3)4) などの金属アルコキシドを加水分解し縮重合させてゾルとし、水分を除いて生じたゲルを焼結してガラス化する[1][11]。
ガラスは図に示すように原子の並びが不規則な非晶質である。結晶では固体の中の結晶界面で光が散乱したり方向により光学特性や力学特性が異なったりするが、ガラスは非晶質なので全体が均一で透明であり、特定方向にだけ割れやすいということもない。
ガラスの加工
工業製品
着色
en:Glass coloring and color markingを参照
熱力学におけるガラス状態
ガラスは液体状態を凍結したような状態(粘度が極端に高くなった状態とも言える)であり、それは準安定状態にあると言える。従って、ガラスは熱力学的には非平衡な状態であり、非常に長時間を経過するとガラスは安定状態である結晶化すると考えられるが、それに対しては異論もある。また、ガラスは過冷却およびガラス転移により粘度が非常に高くなった液体であるという捉え方もある。なお、例えば古い建物の窓ガラスは、それが理由で上部のガラスが下の方に垂れたような形になっているとされたこともあったが、計算によれば千年くらいではとてもそのような差は起きず、実際はガラスの製法によるもので、建設当初からそのような垂れた形になっていたことがわかった [1]。また、同じくガラス化している約2000万年前の琥珀を用いた実験では、2000万年間の密度変化は2.1%にすぎず、数千万年の時間では分子構造がほとんど変化しない事が分かっている[12]。
物理的性質
密度は水の2倍半程度、2.4-2.6g/cm3であるが、鉛を用いたフリントガラスでは同6.3に達する。金属ではアルミニウムが2.7、鉄が7.9であるから、フリントガラスは金属なみの密度であることになる。逆に金属元素を含まない石英ガラスは同2.2である。
引っ張り強さに関しては0.3-0.9×108Pa[13]である。これは鋼鉄の1/10ではあるが、ナイロンや革ベルト、木材と同程度である。
常温では電気抵抗はきわめて高く、絶縁に用いられることもある。内部抵抗率は109から1016 Ωm、湿度50-60%時における表面抵抗率は1010から1012 Ω/□。これはゴムやセラミックスと同程度である。ただし、流動点に近い温度では電気抵抗がきわめて低くなる。
刃物として用いる場合、非晶質であるため理論上は刃の先端径を0にできる(金属などの結晶体はどうしても結晶の大きさ分の径が残ってしまう)ため、鋭利な刃を作ることが可能である。その刃先は研磨によってではなく割れた断面に生じるが、金属より弾性・靭性が乏しいためナイフ・包丁などといった一般的な実用刃物としてはあまり適さない(欠け・割れが生じやすい)。しかし生体組織を顕微鏡で観察する際、樹脂で固めた組織を薄くスライスするカッター(ミクロトーム)として用いられることがある。
化学的性質
化学的には、酸(フッ化水素など、一部のフッ素化合物を除く)には強いがSi-O-Si結合がOH(水酸基)により切断されH2SiO3-やNa2SiO3-として溶解するためアルカリに弱い。たとえばガラス瓶に濃厚な水酸化ナトリウムを入れて長期間おくと、徐々にガラス壁が侵されスリガラス状となる。
天然ガラス
自然界で溶融状態から急激に冷却した場合出来る。一例としてテクタイトや黒曜石等がある。また、岩石にもガラス質の組織が含まれている場合がある。
ガラスの歴史
概説
テンプレート:See also もともとは植物の灰の中の炭酸カリウムを砂の二酸化ケイ素と融解して得られたので、カリガラスが主体であった。灰を集めて炭酸カリウムを抽出するのに大変な労力を要したのでガラスは貴重なものであり、教会の窓、王侯貴族の食器ぐらいしか用いられたものはなかった。産業革命中期以降、炭酸ナトリウムから作るソーダ石灰ガラスが主流になった。炭酸ナトリウムはソルベー法により効率よく作られるようになったが、現在は天然品(トロナ)を材料に用いることもある。産地としては米国ワイオミング州グリーン・リバーが一大産地であり、世界中の需要の大半をまかなっている。埋蔵量は5万年分あるとされている。
ガラス製造の開始
ガラスの歴史は古く、紀元前4000年より前にエジプトやメソポタミアで二酸化ケイ素(シリカ)の表面を融かして作製したビーズが始まりだと考えられている。当時はガラスそれ自体を材料として用いていたのではなく、陶磁器などの製造と関連しながら用いられていたと考えられている。原料の砂に混じった金属不純物などのために不透明で青緑色に着色したものが多数出土している。
なお、天然ガラスの利用はさらに歴史をさかのぼる。火山から噴き出した溶岩がガラス状に固まったものは黒曜石と呼ばれ、石器時代から石包丁や矢じりとして利用されてきた。
古代ガラスは砂、珪石、ソーダ灰、石灰などの原料を摂氏1,200度以上の高温で溶融し、冷却・固化するというプロセスで製造されていた。ガラス製造には大量の燃料が必要なため、ガラス工房は森に置かれ、燃料を木に頼っていた。そのため、その森の木を燃やし尽くしたら次の森を探すというように、ガラス工房は各地の森を転々と移動していたのである。ガラス工場が定在するようになったのは石炭と石油が利用されるようになってからである。
エジプトや西アジアでは紀元前2000年代までに、一部の植物灰や天然炭酸ソーダとともにシリカを熱すると融点が下がることが明らかになり、これを利用して焼結ではなく溶融によるガラスの加工が可能になった。これが鋳造ガラスの始まりである。紀元前1550年ごろにはエジプトで粘土の型に流し込んで器を作るコア法によって最初のガラスの器が作られ、特にエジプトでは様々な技法の作品が作製され、西アジアへ製法が広まった。
新アッシリアのニムルドでは象嵌のガラス板数百点が出土している。年代の確実なものとしては、サルゴン2世(紀元前722年~紀元前705年)の銘入りの壷がある。アケメネス朝ペルシアでは、新アッシリアの技法を継承したガラス容器が作られた。紀元前4世紀から同1世紀のエジプトでは王家の要求によって高度な技法のガラスが作られ、ヘレニズム文化を代表する工芸品の一つとなった。
中国では紀元前5世紀には鉛ガラスを主体とするガラス製品や印章が製作されていた。
古代のガラス
エジプトのアレクサンドレイアで、宙吹きと呼ばれる製造法が紀元前1世紀の後半に発明された。これによって安価なガラスが大量に生産され、食器や保存器として用いられるようになった。また、ヘレニズム的な豪華なガラスも引き続き製造されている。
ヨーロッパの技法が停滞する一方、地中海東部やサーサーン朝ペルシャや中国の北魏や南朝では引き続き高水準のガラスが製造されている。
5世紀頃、シリアでクラウン法の原形となる板ガラス製造法が生み出された。これは一旦、手吹き法によりガラス球を造り、遠心力を加えて平板状にするもので、仕上がった円形の板を、適宜、望みの大きさや形に切り出すことができるメリットがあった。
中世のガラス
イスラム圏では8世紀にラスター彩色の技法が登場した。この技法は陶器にも用いられたが、ガラスに先に使われた。9~11世紀の中東では、カット装飾が多用された。また、ビザンツ帝国では盛んにステンドグラスが製造された。
8世紀頃から、西ヨーロッパでもガラスの製作が再開した。12世紀には教会にゴシック調のステンドグラスが備わるようになり、13世紀には不純物を除いた無色透明なガラスがドイツ南部やスイス、イタリア北部に伝来した。
良質の原料を輸入できたヴェネツィアのガラス技術は名声を高めたが、大火事の原因となった事と機密保持の観点から1291年にムラーノ島に職人が集中・隔離された。ここでは精巧なガラス作品が数世紀にわたって作られ、15世紀には酸化鉛と酸化マンガンの添加により屈折率の高いクリスタルガラスを完成させた。
操業休止期間の他国への出稼ぎなどによって技法はやがて各地に伝わり、16世紀には北ヨーロッパやスペインでも盛んにガラスが製造された。この頃、中央ドイツやボヘミアでもガラス工房が増えている。これは原料となる灰や燃料の薪が豊富であり、かつ河川沿いにあり都市への物流に好都合だったためである。
また、15世紀には西欧各地でさかんにステンドグラスが製造された。当時の平坦なガラスは吹いて作ったガラスを延べてアイロンがけすることで作られていた。大面積の板ガラスが作られるようになったのは20世紀に入ってからである。
日本では8世紀〜16世紀までガラス製造が衰退した[4]。
近世
1670年代に入ると、ドイツ・ボヘミア・イギリスの各地でも同時多発的に、無色透明なガラスの製法が完成した。これは精製した原料にチョークまたは酸化鉛を混ぜるものである。この手法によって厚手で透明なガラスが得られ、高度な装飾のカットやグレーヴィングが可能になり、重厚なバロックガラスやロココ様式のガラスが作られた。
また、アメリカ合衆国ではヴァージニア州に来たヨーロッパからの移民がガラスの生産を始めた。産業的にはなかなか軌道に乗らなかったが、大規模な資本の投下が可能な18世紀末になると豊富な森林資源を背景に工場生産が行なわれるようになった。
日本では徳川吉宗の書物の輸入解禁によって、江戸切子などが作られた。
F・ジーメンスらが1856年に特許を取得した蓄熱式槽窯を用いた製法により、溶融ガラスの大量供給が可能となった(ジーメンス法)。摂氏1600度の高温で原料を数日溶かす。
現代
1950年代、ピルキントンがフロートガラスの製造を開始した。
1970年にドイツ人のディスリッヒによって考案されたゾル-ゲル法が、ガラスの新しい製造法として登場した。これまでガラスを製造する方法は原料を摂氏2,000度前後の高温によって溶融する必要があったが、ゾル-ゲル法ではガラスの原料となる化合物や触媒を有機溶液に溶かし込んで、摂氏数十度の環境で加水分解と重合反応を経て、溶融状態を経由せずに直接ガラスを得る。実際は完成したゲルが気泡を含むため、最終的には摂氏1,000度程度に加熱して気泡を抜いてやる必要がある。この方法の発明によって、ガラスに限らず有機無機ハイブリッド材料の創製など、従来では考えられなかった用途が開かれてきている[4]。
近年では摂氏10000度のプラズマを利用して原料を一瞬で溶かす方法が実用化に向けて開発中である。燃料費を削減でき、温室効果ガスの削減に寄与する。
現在、ガラスは食器や構造材のみならず、電子機器、光通信など幅広い分野で生活に必要不可欠なものとなっている。
ガラスの応用
様々なガラス
- ソーダ石灰ガラス
- カリガラス
- クリスタルガラス
- 石英ガラス
- 偏光ガラス
- 複層ガラス(エコガラス)
- 強化ガラス
- 合わせガラス
- 耐熱ガラス・硼珪酸ガラス
- 防弾ガラス
- ガラス繊維
- 光触媒クリーニングガラス
- 水ガラス
- ウランガラス
- アクリルガラス
- ダイクロ
- ゴールドストーン・茶金石・砂金石・紫金石
- ガラスセラミックス
- 低融点ガラス - ガラス転移点が摂氏600度以下程度のガラス。電子部品において絶縁、封止、接着等に広く用いられている。ホウケイ酸鉛系ガラスが多く用いられていたが、環境負荷低減のために鉛フリー品の開発も進められている。
- 金属ガラス - 金属ガラスは、他のアモルファス金属とは異なり、過冷却液体の状態で安定し、結晶化が始まる前に固体化が完了するため、鋳型による鋳造で製造できるので工業用途での利便性が高い。
- サフィレット
- 分相ガラス 特定のガラスにおいて複数のガラス材料を混ぜて熱処理することで得られる。
- 多孔質ガラス 上記の分相ガラスを酸で溶かすことによって多孔質のガラスを得る。表面をイオン交換樹脂で修飾する事で同位体の分離に利用したり、特定の酵素を担持することでバイオリアクターで使用される。また、燃料電池等のガス拡散電極としての用途もある。
- リキッドガラスまたは液体ガラス、ガラス塗料
- ハイブリッドガラスは、珪素化合物であるシリコーン樹脂とシラノール化合物及び熱可塑性プラスチックを化学的に複数の官能基において架橋させたシリケート化合物であり、常温領域の120-180度で軟化させ急冷することで形成するガラス質複合体である。
- 有機ガラス(ゆうきガラス、organic glass)は、透明なプラスチックでできた「ガラス」である。
主なガラス製造会社
- PPGインダストリーズ(米国)
- コーニング(米国)
- サンゴバン(フランス)
- ピルキントン(英国)- フロート式板ガラスの製造法を発明した。
- 旭硝子(日本)
- 日本板硝子(日本)- 前述のピルキントン社を買収した、日本最大の板ガラスメーカー。
- 日本電気硝子(日本)- NECグループのブラウン管メーカー。
- セントラル硝子(日本)
- HOYA(日本)- 買収・合併により手に入れたペンタックス関連の事業・ブランドを持つ。
- ハリオグラス(日本)
- オハラ(日本)- 主に主要株主(セイコーおよびキヤノン)の製品に供給。
- 近畿車輛(日本)- 近鉄系、主に強化ガラスが中心。公共・医療・福祉関連施設等に導入実績あり。
- 日本山村硝子(日本)- 飲料用向け中心のガラスボトルメーカー。
- 石塚硝子(日本)- 飲料・テーブルウェア向中心のガラス製品メーカー。
- ハルナグラス(日本)- テーブルウェア向中心のガラス製品メーカー。
- 岡本硝子(日本)- 硝子反射鏡、フライアイレンズなどを製造するガラス製品メーカー。
主なガラス工芸品・会社
- ヴェネツィアン・グラス(イタリア)
- エッフェトレ・モレッティ(イタリア)
- ボヘミアガラス(チェコ)
- スワロフスキー(オーストリア)
- オレフォス・グラスブリュック(スウェーデン)
- イッタラ(フィンランド)
- カガミクリスタル(日本)
- 江戸切子(日本)
- 薩摩切子(日本)
- 琉球ガラス(日本)
- 佐竹ガラス(日本)
- 喜南鈴硝子(日本)
- 北一硝子(日本)
日本語での比喩
日本語ではガラスを使った以下のような比喩表現がある。なお、3.に関しては「ガラスの天井」が元来英語圏で提唱されており、彼の地でもこのような使われ方をしていることがわかる。
- ガラスの脆く壊れやすい性質から、わずかな負荷で破損・故障するもののたとえ。
- 透明であるためガラスの向こう側がよく見えることから、内部の全てを包み隠さず明示していることのたとえ。
- 例:「ガラス張りの経営に徹する」(マックスの経営理念の一つ)
- 透明であるためガラスそのものは見えにくいことから、実際に見えないもののたとえ。
- 例:「ガラスの天井」
出典
参考文献
関連項目
テンプレート:Sister テンプレート:Sister テンプレート:Sister
外部リンク
- 社団法人 日本硝子製品工業会 - 日本における硝子生産業者の業界団体
- 日本ガラス工芸学会 - ガラスの研究・振興を目的とした研究者等の学術組織
- ↑ 1.0 1.1 日本化学会編「化学便覧応用化学編-第6版-第I分冊」丸善, 2002年(平成14年), 13.5 汎用ガラス・ほうろう
- ↑ 「琺瑯(グラスライニング)」『セラミックス』43(2008)No.9 P762[2]
- ↑ 濱田利平「琺瑯の歴史について」『神鋼環境ソリューション労働組合-オープンハウスセミナー』Vol.43(2005/04/23)[3]
- ↑ 4.0 4.1 4.2 作咲済夫著 『ガラスの本』 日刊工業新聞 2004年(平成16年)7月30日 初版一刷 ISBN 4-526-05310-4
- ↑ W. H. Zachariasen, 1932:J. Am. Chem. Soc., 54, 3841-3851
- ↑ B. E. Warrem, 1940, Chem. Rev., 35, 239-255.
- ↑ Kuan-Han Sun, 1947, J. Am. Ceram. Soc., 30, 277-281.
- ↑ J. T. Randall, H. P. Rooksby, B. S. Cooper, 1930, J. Soc. Glass Tech., 14, 219T.
- ↑ E. A. Pporai-Koshits, 1959, Glastech. Ber., 32, 140-149.
- ↑ H. Rawson, Inorganic Glass-Forming Systems. Academic Press, 1967.
- ↑ 長倉三郎、他(編)「岩波理化学辞典-第5版」岩波書店, 1998年(平成10年)2月
- ↑ ガラス特性の定説、覆る可能性 ナショナルジオグラフィック ニュース
- ↑ 「理科年表第81冊」、P381 ISBN 978-4-621-07902-7