スペースコロニー

出典: フリー百科事典『ウィキペディア(Wikipedia)』
宇宙コロニーから転送)
移動先: 案内検索
ファイル:Spacecolony1.jpg
オニールのシリンダー型コロニーの想像図

スペースコロニー(Space Colony)とは、1969年に当時アメリカプリンストン大学教授であったジェラルド・オニールらによって提唱された、宇宙空間に作られた人工の居住地である。

概要

スペースコロニーは、1969年アメリカプリンストン大学にて、ジェラルド・オニール博士と学生たちのセミナーの中での、惑星表面ではなく宇宙空間に巨大な人工の居住地を作成するというアイデアから誕生した。1974年ニューヨーク・タイムズ誌に掲載されたことから広く一般に知られるようになった。

地球との引力の関係が安定する領域「ラグランジュポイント」に設置され、居住区域を回転させて遠心力によって擬似重力を得る。コロニー内部には地球上の自然が再現され、人々が地球上と変わらない生活ができるようになるという構想である。

例えば直径約6kmの円筒形のスペースコロニーが地球と同じ重力(1G)を得るには、1分50秒で一回転すればよい。これはかなりの高速だが、地球と同じだけの重力を必要としないのであればさらに低速でよい。

地球全体での人口の爆発的増加資源枯渇などに対する解の一つ(他、確率は少ないが巨大隕石や彗星といった他天体衝突に対するリスク・ヘッジ)として注目されたが、冷戦構造が終結し各国の宇宙開発投資が抑制されていること、特に先進国においては出生率低下傾向が続いていることなどから、今のところ現実のプロジェクトとして具体化してはいない。また、仮に百万人収容できるスペースコロニーを建造できたとしても、世界の人口は一年に8000万人前後増加しているため、一年に80基ものスペースコロニーを建造してやっと人口増加分を吸収できる計算である。さらに、建築材料は月や小惑星から持ってくるとしても、居住する人間は地球から衛星軌道まで運ばねばならない。人数と費用を考慮すると軌道エレベータのような新規の輸送手段が必要である可能性もある。以上のような理由より、費用対効果の面から考えると、人口爆発の解決策として有効であると単純には言えない。現在では単に宇宙空間への植民手段の一つとして認識されている。

なお、日本では一般的に「スペースコロニー」という呼称が多く用いられているが、テンプレート:要出典範囲スペースハビタット(Space Habitat:宇宙居住地)」「スペースセツルメント(Space Settlement:宇宙隣保事業)」などの別の名前で呼ばれる事もある。[1]

デザイン

スペースコロニーのデザインとしては、以下のような案が提唱されている。

シリンダー型

1974年ジェラルド・オニールにより提案されたデザイン。著書『ハイ・フロンティア』(The High Frontier: Human Colonies in Space)ではテンプレート:仮リンクと呼ばれている。オニールのスペースコロニーと言った場合、一般的にこのモデルを指す。シリンダーは直径6km、長さ30kmで1000万人の人口を想定している。0.55rpmで回転(1分50秒で1回転)し、地球と同等の重力を発生させる。円筒内部は軸方向に6つの区画に分かれており、交互に陸と窓の区画となっている。窓の外側には太陽光を反射する可動式の鏡が設置され、昼夜や季節の変化を作り出す。窓の蓋の様に見える為か、稀に誤解する者がいるが、この反射鏡は凹面鏡ではなく平面である。

ベルナール球

ベルナール球またはバナール球は、1929年J・D・ベルナールが提案したデザイン。原案では、直径16kmの球殻に2万~3万人の人口を想定していた。後にスタンフォード大学にて再設計され、直径500m、1万人の人口で、1.9rpmで回転して赤道部分に地球と同等の重力を持つ構造のものが提唱されるようになった。この設計案では、太陽光は外部に設置された鏡にて反射され、極付近の大きな窓から取り込まれる。この再設計したものは、オニールの著書ハイ・フロンティアにて島1号(Island One)と呼ばれている。また、直径1.8km、人口14万人に拡大したものは島2号(Island Two)と呼ばれている。


スタンフォード・トーラス

ファイル:Stanford torus under construction.jpg
スタンフォード・トーラスの想像図

スタンフォード・トーラスは、1975年スタンフォード大学にて設計されたトーラス型(ドーナツ型)のデザイン。直径1.6km、1万人の人口を想定しており、1rpmで回転してリング内部の外側に、地球と同等の重力を発生させる。太陽光は鏡で取り込まれる。リングはスポークで結ばれ、スポークは人や物資の移動にも使用される。また、スポークで繋がれたハブ無重力であるため、宇宙船ドッキングなどに使用される。

小惑星型

構造物を一から建造するのではなく、小惑星や小型衛星などの天然天体の内部をくり貫き、内側を居住区域とするもの。

建造資材を自己調達できるメリットがある。

スペース・ナッツII

1996年大林組の季刊誌に掲載されたデザイン。長さ1.9km、アポロチョコを底面で二つ結合したような双円錐状の形をしている。外殻と内殻の2層からなり、人口は2千人。

技術的課題

スペースコロニーで健康な人間集団を維持するためには、以下のような多くの課題を解決しなければならない。

大気

基本的に、殆どのコロニーのデザインは、巨大で、薄い壁に覆われた圧力容器とみなすことができる。コロニー内部に地球と同じ大気を実現するには大量の酸素窒素を必要とする。そのうち、酸素は月の石から入手可能である。窒素は地球から入手できるが、地球からの輸送には多大な費用がかかるため、完璧に近い空気のリサイクルを行う必要がある。空気は様々な方法でリサイクルすることが可能であり、わかりやすい手段としては、光合成のための庭園(できれば水耕栽培森林庭園)を使用する方法がある。しかしながら、これらは工業汚染(たとえば揮発油や過剰の分子性ガス)は取り除けない。原子力潜水艦で使われている標準的な方法として、触媒としてバーナーを使うものがあり、これは殆どの有機物を取り除くのに効果的である。それ以上の安全のために、小さな低温の蒸留装置で徐々に不純物(水銀蒸気やバーナーでは除去できない希ガス)を取り除く必要があるかもしれない。

有機物

有機物の大部分は、初めは月や小惑星、または地球から輸入しなければならない。だがその後は、リサイクルにより輸入の必要性を減らすことができる。提案されているリサイクル方法の一つとして、低温の蒸留物、植物、ゴミ、それに下水を電気アークで焼却して、それをさらに蒸留するものがある。それにより、二酸化炭素と水は直ぐに農場で使用できるだろう。灰の中の硝酸塩と塩は、水に溶かすことで純粋な鉱物に分離される。ほとんどの硝酸塩、カリウムナトリウム塩は有効に肥料としてリサイクルできるだろう。ニッケル、およびシリコンを含むその他の鉱物は、まとめて化学的に精製して工業用に再利用できる。残ったごく一部(重量にして0.01%未満)の資源は無重力下の質量分光法で純粋な元素へと処理し、肥料や工業資材へと加えることができる。この方法はNASAの研究で証明された手段であり、人々が実際にスペースコロニーで生活を始めれば、より洗練された方法がとられるようになるだろう。

重力

長期間の軌道上での研究で、無重力では筋肉が弱くなり、カルシウム新陳代謝免疫システムの調子が悪くなることが立証されている。ほとんどの人々が絶え間ない鼻づまり鼻炎となる上、体質によって起きる宇宙酔いは訓練等で克服することができない。そのため、ほとんどのコロニーは擬似重力(遠心力)を発生させるために回転運動を利用するデザインがなされている。NASA植物を使った研究で、遠心力は生理学上は重力の有効な代わりとなることが証明されている。だが、そのような環境で人の頭を素早く回転させることは、人の内耳が異なる回転速度で動き、“傾き”を感じる原因となる。遠心分離機による研究では、半径100m未満、または3rpm以上の回転速度で回転する住居の中では、人々は乗り物酔いとなるということが示された。しかし、この研究と統計上の推測によれば、ほとんど全ての人々が半径500m以上で1rpm以下で回転する住居の中であれば、快適に生活できることも示された。

発生学的にみて脊椎動物の発育には重力が必要であり、脊椎動物の胎児は無重力では脊椎などがうまく形成されないことが判明している。このためスペースコロニーでの妊娠出産育児には重力が必須であり、妊婦が無重力状態に晒されると奇形や死産の原因になる可能性がある。

回転による疑似重力を利用したコロニーでは、通常の重力下とは異なる運動が起きる。例えば、回転と同じ方向への移動中は疑似重力が増加し、反回転方向への移動中は疑似重力が減少する。また、回転するコロニー内で上下方向(回転軸のある方向およびその逆方向)に移動しようとすると、横方向への大きなコリオリの力を受ける。この結果、たとえば単純なボールの投げ上げ運動でも、その軌道は複雑になる。

放射線

宇宙空間での放射線については、二つの問題がある。1つは宇宙線で、年間80mSv被曝をすることになる。年間50mSvが安全上の最大値で、健康上問題ない最大値は年間3mSvである。もう一つは、太陽フレアによりまれに放射される大量のX線高エネルギー荷電粒子である。これらの放射が起きると、50%致死線量(LD50)の4Svを超えるほどの放射線が放出される。

研究の結果、巨大なスペースコロニーではその構造(2m以上の厚さの鉄)と空気がガンマ線を効果的に遮蔽する盾となることが発見された。小さなコロニーでは、外側に多量の岩石を浮かべて(回転させないで)盾とすることができる。

太陽光は放射線対策をしたルーバーから鏡を通して入射させることができる。

温度管理

コロニーは真空中に存在することから、巨大な魔法瓶に類似しているといえる。したがって、取り入れた太陽光と生物からの熱を除去するためのラジエーターが必要となる。非常に小さなコロニーでは、コロニーと一緒に回転する放熱翼を持つ方式が考えられる。この方式では、対流により暖かい空気が翼に集められ、冷たい空気はコロニー内へと沈んでいくだろう。また、他の方式としては、中心的なラジエーターにより冷やした水などを冷却材として分配するというものも考えられる。

建設場所

コロニーに最適な軌道についてはまだ議論されているが、それはおそらく商業的な問題である。月とのラグランジュ点L4とL5の軌道は、現在では月・地球の双方から遠すぎると考えられるようになっている。より新しい案として、交互に月と地球に近づき、双方に低エネルギー(安価)で接近できる2:1の共鳴軌道を使用することが提案されている。これにより、原材料と市場の双方を素早く、かつ安価に利用することができる。

また、ほとんどのコロニーのデザインでは、他の宇宙施設や等との間の物資の運搬手段として、ロケットの代わりにテザー衛星(下ろし作業)やマスドライバー(上げ作業)を使用することが考えられている。これらの利点は、どちらも推進剤を全く使用しないか、あるいは非常に安価だということである。ただ、マスドライバーは重力井戸の深い地球からの物資打ち上げには不適当とされている。

姿勢制御

コロニーの設計では、ほとんどの鏡が太陽に向くことが要求されている。オリジナルのオニールのデザインでは、二つのシリンダーをモーメンタムホイールとして使用し、歳差運動により角度を変更して、太陽方向に押し出すようになっていた。以降のデザインでは、軌道上で回転して、窓に太陽光が直角に指すように、小さな電気モーターで太陽を追うように誘導できる軽量な鏡を使用するなどしている。

事故・テロ対策

「数万人もの人々が暮らす、薄い壁に覆われた圧力容器」であるコロニーは、事故・テロ等の災害に極端に弱いと考えられる。この為、非常時の救命設備と住民の避難訓練に万全を期する必要がある。

スペースコロニーが登場するフィクション

シリンダー型
関連項目サイドコロニー落としコロニーレーザー
ベルナールの球型
スタンフォード・トーラス型
砂時計型
ダイソン球型
  • アニメ『革命機ヴァルヴレイヴ』外観は小型(直径200〜300kmほど)のダイソン球を模したデザインになっている。中心に浮かぶ人工太陽の周囲にハニカム型をした直径10kmほどの居住ブロック(モジュール)が多数取り囲み、球状を形成している。
その他・不明

参考文献

関連項目

脚注

テンプレート:Reflist

外部リンク

テンプレート:宇宙ステーション テンプレート:宇宙旅行ar:استعمار الفضاء

ta:விண்வெளிக் குடியிருப்பு
  1. 英語版WikipediaではSpace Habitatの名前で同様の項目が作成されている。