関数一覧

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索

数学の中で、特別の名前を冠するに足る重要な関数がいくつかある。 これはそれらの関数の個々の記事を参照するリストである。

初等関数

ジョゼフ・リウヴィル初等関数を次のように定義した。多項式を第 0 級初等関数、指数関数 ez と対数関数 log(z) を第 1 級初等関数、両者をあわせて、たかだか第 1 級初等関数と呼ぶ。以下、関数の合成を行うことで、たかだか第 n 級初等関数を帰納的に構成できる。たかだか第 n 級初等関数であって、たかだか第 n−1 級初等関数でないものを、第 n 級初等関数と呼ぶ。

  • 多項式関数: 多項式は不定元のべきたちの定数倍と、それらの和のみからなり、不定元への値の代入が関数を定める。べき関数とも呼ばれる。多項式の次数 n により 「n 次関数」のようにも呼ばれる。
  • 有理関数: 多項式ので与えられる関数。分数関数、代数関数とも。

整数論的関数

主に整数論で使われる関数の一覧。

その他の特殊関数

名前のついた関数を特殊関数というが、ここは他の分類に収まらないものの一覧。

超関数

  • ディラックのデルタ関数: 0 以外の任意の実数に対しては 0 が対応し、 0 を内点とする任意の区間上で独立変数を変化させていくときの(広義)積分の値が 1 であるような超関数。 普通の意味での関数ではないが確率分布ではある。

関数のクラス

ここは名前のついた関数ではなく、名前のついた性質をもった関数の一覧。


テンプレート:数学