液状化現象
液状化現象(えきじょうかげんしょう)は、地震の際に、地下水位の高い砂地盤が振動により液体状になる現象。これにより比重の大きい構造物が埋もれ、倒れたり、地中の比重の小さい構造物(下水管等)が浮き上がったりする。ゆるく堆積した砂質土層では、標準貫入試験で得られるN値が10程度以下と小さい場合が多い。一般に、液状化現象が生じるかどうかは、FL値、液状化の程度はDcyやPL値などの指標を用いて判定する。単に液状化(えきじょうか、テンプレート:Lang-en-short)[1]ともいう。
なお、この現象は日本国内では新潟地震の時に注目されたが、当時はまだ「液状化現象」の言葉は使われておらず、行政やマスコミは「流砂現象」という言葉を使っていた
概要
実際は、地表付近の含水状態の砂質土が、地震の震動により固体から液体の性質を示すことにより、上部の舗装や構造物などが揚圧力を受け破壊、沈み込みを起こすものである。「流砂」とも呼ばれていた。
発生する場所は砂丘地帯や三角州、港湾地域の埋め立て地などがほとんどであるが、近年の研究では、旧河川跡や池跡や水田跡なども発生しやすい地質であることが分かってきた。近年、都市化で該当地域が多いことで被害拡大の影響が懸念される。
1964年6月16日に発生した新潟地震の際、信濃川河畔や新潟空港などでこの現象が発生したことから国内でも知られるところとなる。また同年に発生したアラスカ地震でも液状化による被害が発生し、これ以降土質力学の分野で活発に研究が行われるようになった。
東京都心部は、河口に位置する上、埋め立て地が多く存在することから、大地震の発生時には大規模な液状化現象が各所で発生し、建物の倒壊や堤防の破堤による浸水など大きな被害が発生するものと考えられている。現在、液状化現象の発生危険箇所をとりまとめたハザードマップが整備されており、堤防の補強などの措置が図られている。
ライフラインの被害も懸念され、ガス管はポリエチレン化が進んでいる(テンプレート:要出典範囲)。一方、下水道管は耐震化が困難で、回復も遅いため、居住困難な状態が継続する場合がある(2011年の東日本大震災での福島第一原子力発電所免震棟、Jヴィレッジ、浦安市、いわき市など)。
液状化のプロセス
砂を多く含む砂質土や砂地盤は砂の粒子同士の剪断応力による摩擦によって地盤は安定を保っている。このような地盤で地下水位の高い場所若しくは地下水位が何かの要因で上昇した場所で地震や建設工事などの連続した振動が加わると、その繰り返し剪断によって体積が減少して間隙水圧が増加し、その結果、有効応力が減少する。これに伴い剪断応力が減少して、これが0になったとき液状化現象が起きる。この時、地盤は急激に耐力を失う。また、この時、間隙水圧は土被り圧(全応力)に等しい。この状態は波打ち際などで水が押し寄せるまでは足元がしっかりとしていても水が押し寄せた途端に足元が急に柔らかくなる状態に似ている。また、雨上がりの地面を踏み続けると、地面に水が吹き出てくる状態にも似ていると言える。
地震や建設工事などで連続した振動が砂地盤等に加わると前記の液状化現象が生じる場合があり、地盤は急激に支持力を失う。建物を地盤に固定する基礎や杭の種類は地質や土地の形質に合わせて多種にわたるが礫層や岩盤等の適当な支持層に打ち込む支持杭と異なる摩擦杭等では建物を支えていた摩擦力を失い、建物が傾く不同沈下を生じる場合がある。重心の高い建物や重心が極度に偏心した建物ではより顕著に不等沈下が生じ、阪神・淡路大震災による中高層建物のように転倒・倒壊に至る場合がある。
下層の地盤が砂質土で表層を粘土質で覆った水田等で液状化が起きた場合は、液状化を起こした砂が表層の粘土を突き破り、水と砂を同時に吹き上げるテンプレート:仮リンク(噴砂)と呼ぶ現象を起こすことがある。1964年の新潟地震では県内の各地でボイリングが観測された。
地震に伴って液状化が発生しうる地点の震央距離 R(km)とマグニチュード M の関係は logR=0.77M-3.6 で表すことができる[2]とされている。
側方流動
側方流動(そくほうりゅうどう、テンプレート:Lang-en-short、lateral spreading)は、地盤流動現象の1つで、傾斜や段差のある地形で液状化現象が起きた際に、いわゆる泥水状になった地盤が水平方向に移動する現象をいう。
側方流動には大きく分けて2つのタイプがある。1つは、地表面が1 - 2%程度のゆるい勾配になっており、地中部には液状化層が存在するものである。この場合、地盤が傾斜に沿って移動することとなる。もう1つは、護岸などに見られるタイプで、地震の揺れおよび地盤の液状化で護岸などが移動することで、後背の地盤が側方流動を引き起こすものである。
このような側方流動が発生した場合、地中構造物に多大な影響を与える。例えば、杭基礎であれば、側方流動が発生することにより杭は地盤から水平方向にせん断や曲げの力を受けることとなる。この地盤からの力が杭の耐力を超過し、杭のせん断破壊等を起こす。このため、杭基礎は上部構造物を支える事ができなくなり、場合によっては構造物の転倒などを引き起こすことにつながっていく。
発生例
日本
- 1964年6月16日 新潟地震
- 信濃川河畔や新潟空港などで発生した。
- 1995年1月17日 兵庫県南部地震(阪神・淡路大震災)
- 神戸市のポートアイランド・六甲アイランドで大規模な液状化現象の発生が確認されている。
- 2004年10月23日 新潟県中越地震
- 小千谷市や長岡市、与板町、柏崎市など、水田や湖沼を埋め立てた箇所等で液状化の発生が見られた。
- 2011年3月11日 東北地方太平洋沖地震(東日本大震災)
- 関東地方では1都6県96市町村で液状化被害が確認されている[3]。世界最大の被害になった[4]。
日本国外
対策
テンプレート:出典の明記 以下の対策により、新しく埋め立てられた埋め立て地では液状化現象の被害が抑えることができる。
- サンドコンパクションパイル工法 - 砂を入れて突きかため柱を作り、その上に建築物を載せる(東京ディズニーランドで一番重いシンデレラ城を支えている)。
- ドレーン工法 - 柱を作り水を抜き液状化を抑え、非常時には水を逃がす。
- グラベルドレーン工法 - 砕石。
- ペーパードレーン工法 - 紙または布。
- サンドドレーン工法 - 砂。
- 地盤を薬品で固める。
- 杭(パイル) - 鉄製またはコンクリート製の杭を支持基盤(N値=50以上が望ましい)まで打ち込む(東京都内で54mという例がある)。
- 地下室を作る - 建物の比重が下がり、土の上に浮いた形になる。
- ガス管をポリエチレン製に変える。
- 建物への引き込み部分がずれに弱いので、フレキシブルにする。
脚注
参考文献
関連項目
外部リンク
- テンプレート:Cite web
- テンプレート:Cite web
- エンジニアが見た新潟県中越地震(長岡技術科学大学 経営情報系 情報システム計画研究室) テンプレート:リンク切れ
- テンプレート:Cite web
- テンプレート:Cite web