先カンブリア時代
テンプレート:原生代 先カンブリア時代(せんカンブリアじだい、Precambrian (age))とは、地球が誕生した約46億年前以降、肉眼で見える大きさで硬い殻を持った生物の化石が初めて産出する5億4,200万年前以前の期間(約40億年)を指す地質時代であり、冥王代(Hadean)、始生代(Archeozoic)、原生代(Proterozonic)の三つに分け、これらの時代区分は生物の進化史を元にしている。
先カンブリア時代に関しては詳しいことがあまり分かっておらず、現在知られていることもほとんどはここ数十年で分かってきたことである。
先カンブリア代 (Precambrian eon(s)) とも呼ばれる。また、古生代、中生代、新生代を表す顕生代に対して、隠生代 [1](Cryptozoic eon(s)) と呼ぶ。まれに先カンブリア紀 (Precambrian period)と呼ばれることがあるが、紀は累代および代より小さい時代区分なので、これは正しくない。
名称
年代測定の手段が化石の比較による相対年代しかなかった時代には、明瞭な化石が出る最古の時代であるカンブリア紀以前は、年代測定の手段がなく、地質時代を区分することが出来なかった。そのため、先カンブリア時代として一括して扱われた。
隠生代という名称は、大型生物などの化石がほとんど見つからないことから、先カンブリア時代終了から現在までの、化石が大量に見つかる時代である顕生代と対照して名付けられた。
区分
先カンブリア時代は、累代・代・紀・世といった通常の階層的な地質時代区分とは少々性質が異なる。
国際層序委員会 (ICS) などによる標準的な時代区分では、先カンブリア時代は冥王代・始生代・原生代の3つの累代からなる。地球史を構成する4つの累代のうち3つが先カンブリア時代に属することになる。なお4つ目の累代は、古生代・中生代・新生代の全てが含まれる顕生代である。
先カンブリア時代は、他の地質時代のような、地球史をいくつかに分けた1つというよりは、地球史の大部分であるといえる。
先カンブリア時代の地球
地球は約46億年前に、太陽の周囲を廻る軌道にあった天体、すなわちミニ惑星が合体して形成されたとされる。小さな塵などが合体して火星ほどの大きさになり、それがさらに10個ほど衝突して現在の地球となった。このうち最後の衝突はジャイアント・インパクトと呼ばれ、月ができる原因になったとされる。原始地球の表面は岩石が溶けたマグマの海で覆われ、水は水蒸気、雲として大気中に存在していた。やがて微惑星の衝突がおさまり表面温度が下がると地殻が形成され、水蒸気は雨として降り海洋を形成したと考えられている。こうした活動が続いたこともあり、約40億年前には地球のほぼ全体が海で覆われるようになった。現在地球上で見つかっている最古の岩石が約44億400万年前のものであることから、少なくともこの頃までには地殻は形成されていたようである。
40億年前から38億年前の期間に、それまで減少傾向だった隕石の衝突が再び急激に増加したことが月のクレーターの調査から明らかになり、隕石重爆撃期と呼ばれるようになってきたが、なぜ太陽系ができてから6億年も経った時期に隕石の衝突が増えたのか、原因はまだ分かっていない。
生命
生命がいつ誕生したかについては諸説あるが、グリーンランドのイスア地方で、38億年前の岩石に生命由来のものと思われる炭素の層が見つかっている[2]。35億年前の細菌類の化石が、南アフリカのオルフェルワクト層のチャートから出土している[3]。
西オーストラリアビルバラ地域では保存状態が良好な34億6,000万年前以前の原核生物の化石(ワラウーナチャートとエイベックスチャートという岩石から出たもの)が発見されている。また、同時期の地層からメタン生成の証拠が出ており[4]、メタン菌はエウリ古細菌の特定クレードに集中することから、この時期既に生物の分化が進んでいた可能性がある[5]。
生命が発生したのは早ければ43億年前であるとする研究者もいる。このように先カンブリア時代を通して、原始的生命体が生きていた確実な証拠が見つかっている。
およそ27億年前頃までには、藍色細菌が現れた。藍色細菌が光合成を行う際に不必要なものとして廃棄された物質が酸素であり、これらの生物が光合成を行い続けるにつれて、わずかにではあるが酸素の濃度は少しずつあがっていった。酸素は後に、他の生命が生息していくための一つのエネルギー源にもなる物質として利用されることになる。系統解析からは、始生代の終わりには真正細菌と古細菌の多くの門が出そろったと推定されている[5]。
22億年前前後には大酸化イベントが進行した。酸素を必要としない嫌気呼吸する嫌気性細菌と好気性細菌が入れ替わったと推定され、地球生命史における「生物の最初の大絶滅と棲み分け」であったと考えられる[6]。
19億年前になると、カナダ・スペリオル湖北岸のガンフリント層(主にチャートの地層)から多くの微化石が出土するようになる。それらは球状・繊維状の形態をした細菌類である[3]。
真核生物の出現は不確かだが、21億前までには最初の真核生物が表れたと推定されている[7]。ただし、初期の真核生物の系統の多くは残っておらず、多様化が進んだのは11億年前とする説がある[8]。
米国テキサス州とインドでの古い不確かな報告以外では、複雑な多細胞生物と考えられる最古の証拠は約6億年前のものである。世界各地の約6億年前から約5億4200万年前にかけての地層から、現在のものとは全く違う軟体動物の痕跡が見つかっている。これらはエディアカラ生物群と呼ばれる。先カンブリア時代末期の5億4,400万年前には、異なった形態の生物が出現する。これは「有殻微小動物群」(Small shelly fauna) と呼ばれるが、詳しい事はほとんど分かっていない。この生物群は顕生代の始め、カンブリア紀のごく初期に消滅し、入れ替わるようにして多様な生物群が出現した。これはバージェス動物群と呼ばれるが、この生物群の爆発的な多様化をカンブリア爆発と呼ぶ。
1950年から1980年にかけてソ連や北米の古生物学者たちがトモティアン動物相をカンブリア系基底の堆積物の下から発見した。これらの生物は小さな骨格を持っており、小さな管や円錐の殻からできている。6億年前の動物相であり、エディアカラ動物相と系統的関係がない。しかし、カンブリア系の化石の生物の多くのものの直接の先祖であるらしい。[9]
プレートテクトニクス
先カンブリア時代のプレートテクトニクスの様子は曖昧にしか分かっていない。当初は海ばかりでほとんど陸は無かったと考えられている。プレートが他のプレートの下に沈み込む場所で造山運動が始まり、小さな島や日本列島のような弧状列島などができ、やがてそれらが拡大、合体して次第に大きな陸塊へと成長していった。約27億年前には、マントルの対流が二層対流から一層対流へと変わったことでプレートが大きくなり、次第に大陸が形成されていった。
またこの頃、激しい火山活動により大陸が急成長した。約19億年前には、初めての超大陸であるヌーナ大陸が形成された。これは現在の北アメリカ大陸ほどの大きさだったとされる。この頃、2度目の大陸急成長が起きた。その後の大陸移動の様子は研究者によって大きく意見の食い違いがあり、存在した大陸の名前も確定していない。
超大陸ヌーナが分裂した後、10億年前に超大陸ロディニアが形成され、6億年前に分裂したという説や、10億年前に超大陸パノティアが形成され、それが一旦分裂した後、6億年前に超大陸ロディニアが形成されたという説、さらには15億年前頃にも超大陸が形成されたという説もある。7億年前から5億年前頃には、3度目の大陸急成長期があった。
氷期
この時代には、何度かの氷期があった痕跡が認められる。現在分かっている最古の氷期は、約24億年前から約22億年前の頃のヒューロニアン氷期である。また、8億年前から6億年前にかけては2度の氷期が訪れ、スターティアン (Sturtian) 氷期、ヴァランガー (Varangian) 氷期と言われている。最近では、これらの氷期において、地球が赤道まで氷河に覆われるスノーボールアース(全球凍結)と呼ばれる状態になった可能性が指摘されている。
大気
初期の大気は地球が形成された約46億年ごろからすでにあったとされているが、その他の初期の大気についてはほとんど分かっていない。現在、2つのモデルが考えられている。1つは、最初に、太陽の周りにあった星間ガスから、水素やヘリウムを主体とする大気ができたが、太陽が初期に明るく輝く時期があり、その時に吹き飛ばされ、その後に隕石に由来する二酸化炭素や水蒸気を主成分とする大気ができたとする説テンプレート:要出典。もう1つは、最初から二酸化炭素や水蒸気を主成分とする大気ができたとする説テンプレート:要出典である。地球上での酸素の存在が確認されたのは約35億年前であるが、いずれにしろ当時における酸素成分は非常に少なかった。
初期の大気は、水蒸気がおよそ300気圧、二酸化炭素や一酸化炭素が50気圧から100気圧、窒素が1気圧ほどだったと考えられている。しばらくすると水蒸気が凝縮して海が形成され、二酸化炭素が主成分となった。初期の太陽は光度が現在の70%ほどしか無かったが、大量の二酸化炭素の温室効果のため、現在よりもかなり気温は高かった。地表の気温が60℃を超えていたと考えられる痕跡も残っている。二酸化炭素は海に吸収されたり、炭酸カルシウムとなって沈殿したりして徐々に減少していった。
27億年前にはシアノバクテリアによる光合成が始まり、酸素が大量に作り出されるようになる。生じた酸素は主に海水中の鉄イオンなどと化学反応を起こし、大量の酸化鉄を沈殿させた。現在使われている鉄鉱石やマンガンなどの大部分は、この時沈殿した酸化物が隆起して地上に現れたものを掘り出して生産されている。古い岩石には、この時に鉄と酸素が結合して沈殿した証拠である縞状鉄鉱層が大量に含まれている。海水中のイオンをほとんど沈殿させると、酸素は大気中へと放出され、蓄積していった。こうして、現在のように、酸素が大気の主成分の1つとなっていった。
ただし、この当時の酸素の割合は、1%程度にすぎなかったとする説テンプレート:要出典もある。最近では、8億年前から6億年前にかけて、全球凍結が起こり、その終了とともに爆発的に光合成を行う微生物が増殖したため、酸素濃度が1%から20%ほどに一気に増えたとする仮説が提出されているテンプレート:誰2。(カンブリア爆発)
地質時代区分
- 先カンブリア時代
- 顕生代
脚注
参考文献
- 池谷仙之・北里洋著『地球生物学 ー地球と生命の進化ー』)東京大学出版会 2004年 ISBN 4-13-062711-2
関連項目
外部リンク
- PALEOMAP Project : Late Precambrian Supercontinent and Ice House World テンプレート:En icon
- テンプレート:Cite web
- テンプレート:Cite web
- テンプレート:Cite web
- ↑ 化石に乏しいことから陰生代と呼ぶ(池谷仙之・北里洋著『地球生物学 ー地球と生命の進化ー』)東京大学出版会 2004年 82ページ)
- ↑ Yoko Ohtomo, Takeshi Kakegawa, Akizumi Ishida, Toshiro Nagase, Minik T. Rosing (2013). "Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks". Nature Geoscience. 7, 25–28.
- ↑ 3.0 3.1 池谷仙之・北里洋著『地球生物学 ー地球と生命の進化ー』)東京大学出版会 2004年 83ページ
- ↑ Ueno Y, Yamada K, Yoshida N, Maruyama S & Isozaki Y (2006). “Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era”. Nature 440 (7083): 516–519.
- ↑ 5.0 5.1 Battistuzzi FU, Hedges SB (2009). "A major clade of prokaryotes with ancient adaptations to life on land". Mol. Biol. Evol. 26 (2): 335–43.
- ↑ 池谷仙之・北里洋著『地球生物学 ー地球と生命の進化ー』東京大学出版会 2004年 84ページ
- ↑ El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E.; Bekker, Andrey; Macchiarelli, Reberto; Mazurier, Arnaud; Hammarlund, Emma U.; Boulvais, Philippe et al. (2010). "Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago". Nature 466 (7302): 100–104.
- ↑ Berney, C., Pawlowski, J., A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc. R. Soc. B 273, 1867-1872 (2006).
- ↑ ピーター・ダグラス・ウォード著、瀬戸口烈司・原田憲一・大野照文訳『生きた化石と大量絶滅 ーメトセラの軌跡ー』青土社 2005年 72ページ