研究
研究(けんきゅう)とは、ある特定の物事について、人間の知識を集めて考察し、実験、観察、調査などを通して調べて、その物事についての事実を深く追求する一連の過程のことである。語義としては「研ぎ澄まし究めること」の意。
目的
研究の目的は突き詰めれば、新しい事実や解釈の発見である。それゆえ、研究の遂行者は、得られた研究成果が「新しい事実や解釈の発見」であることを証明するために、それが先行研究によってまだ解明されていないことも示す必要がある。また、自身の研究成果が新しい発見であることを他の研究者によって認めてもらうためには、学会や査読付き論文などにおいて研究成果を公表しなければならない。もしどんなに優れた研究成果が得られても、それが他の研究者によってすでに明らかにされていたとすれば、精度のよしあし、方法/条件、解釈等に差異がない場合には原則としてその研究は無価値に等しいとされる可能性がある。逆に言えば、これらに違いがあれば素人目には同じに見えるかもしれない研究成果いずれもが新規な成果として評価される場合もある。例えば原子分解能での物質の測定は、電子顕微鏡でも、走査型トンネル顕微鏡でも、原子間力顕微鏡でも達成されているが、いずれの研究も極めて高い評価を得ている。また、誰にも知られず埋没していた研究と同じ成果が、誰かに「再発見」されることによって、その分野の研究に大きく貢献したり、評価されたりすることはある。代表例としてメンデルの法則やガロア理論などがある。また、ほぼ同時に同じ研究成果を挙げたり、あるいは異なる分野で独立に研究されていたものが、後に同じ研究成果であると判明した場合など、「独立して」研究がなされたと見なされる場合も同様である。逆に、たとえ先行研究であっても、たとえば研究会のみで発表して論文として発表していなかった場合、あるいは発表が遅れた場合などは、その研究が先行した研究と認知されない場合もある(代表例として内山龍雄のゲージ理論などがある)。
基礎研究と応用研究
厳密に区分することはできないが、研究には「基礎研究」と「応用研究」の2つがある。
- 基礎研究
- 純粋研究とも呼ばれ、新たな法則、定理などの「発見」を目的にして行われる研究。応用研究の核となる。
- 応用研究
- いわゆる「発明」。基礎研究の成果を応用し、科学技術の創出を目指す。
過程
研究を、作業工程という観点から考えた場合、基礎研究、応用研究の別によらず大雑把に言えば「研究とは仮説の構築とその検証、再評価の延々たる繰り返し」である。
「一つの研究」に着目して考えると「一つの研究」の各段階は、概ね「計画、実行、評価」の流れで見ることが出来、より詳しくは以下の要素からなっていると考えることが出来る。このように研究の過程が構造化されていることは、研究結果の公表物であるところの論文がIMRADのように構造化されているのとよく似ている。しかしながら、「論文におけるIMRADのような略称」は今のところない。
- 予備調査、予備実験、先行研究のレビュー:
- 「何を調べたいのか」、「何を調べるのか」、「何を調べることが出来るのか」、「何を調べればモノになるのか?」「調べようとする問題に先人はどのように取り組んできたのか」、「調べようとする事柄を調べるにはどのような方法が検討しえるのか」を整理するために文献調査、討論、予備的な実験等を行う。
- 研究目的の決定:
- これからおこなう一連の活動によってどのような問題を解決、解明しようとするのかを決定する。また、これから解決、解明しようとする問題にどのような切り口から光を当てるのか、どのような着眼点を持つのかをまとめる。
- 仮説の構築:
- "(2)"で設定した問題の「仮の答え」をいくつか考える。ここでいうところの「仮の答え」は、「棄却すべきであるか否か」を「いくつかの実験事実等の事実」と「それからの推論」のみで決定できるものでなければならない(検証可能性)とされ、通常、定性的あるいは定量的なモデルを立てるという形をとる。
- 但し、場合によっては明確な形の仮説をおかず、「ここを調べればちょうど抜けたパズルのかけらが埋まりそうだ」といったレベルの考えで話を進めることもある(だからといって悪い結果が得られるとは限らない)。また、「どのような実験をすればどのような結果(どのような範囲、傾向の結果)が得られるのか」であるだとか、「もしこういう結果が出た場合はこういうことが考えられる」、「複数の実験および先行研究の結果を組み合わせた上でどのような知見が得られるのか」などの問題意識をよりハッキリさせるにとどまる場合がある。そのようなケースにおいては(2)の段階や(4)の段階との区別があいまいになる
- (仮説検証のための)調査方法、実験方法の立案、実験の準備:
- 実験、調査(データの収集、データの解析):
- 考察:
- 仮説、研究目的の妥当性の評価、得られたデータから予想あるいは主張できる内容の抽出、仮説の真偽判定及び修正、及びそれらに基づいた研究計画の修正などを行う。また、得られたデータや先行研究によって得られた事実にどのような文脈の中におくのかを検討する。
- 研究成果発表の公表:
- 学会発表・専門誌への公刊、研究室内、学内での研究報告会、審査会等。ここでもらった意見の一部は研究にフィードバックされる。
- 突然のひらめき:
- 有名な学者の多くが、行き詰まった環境下でふと、あることに気づき、ブレークスルーに繋がったというエピソードを語る。
- 偶然的な発見(セレンディピティ):
- 有名な学者の多くが偶然という言い方をするが、実際のところは、広くアンテナを張り巡らし、適切な記録をとり、わずかな兆候を見逃さず、いろいろな解析処理を試せるだけの技能とチャレンジ精神を持ち、適宜研究計画にフィードバックを加えるといったことが出来るぐらいに訓練された人間以外にはなかなかこのような幸運は訪れない。
- 偶然(学会、ディスカッション)などで情報にめぐり合う:
- あるうわさを聞いてあわてて帰って研究室に引きこもって何かに取り付かれたように研究に取り組んだという逸話が残る先生が何人かいる。
- 研究経費の獲得(科研費、COE等):
- 地獄の沙汰も金次第。
高等学校向けの理科の検定教科書の課題研究の項や、各大学の学生実験の指導書等、研究の初心者あるいはそれ未満のレベルの人を対象とした人向けの教育課程では研究の過程として「『(1)→(2)→(3)→(4)→(5)→(6)→(1)』のループを何度か繰り返したあと、(7)に至る」などといった極めてオーソドックスな流れを解説している。ただし、理科の検定教科書間でも記述に若干の違いがあり、執筆者の個性が伺われる。ただし、どの教科書においても概ね「要素」としてあげているものは上の(1)~(7)で尽きている。問題は、一部の要素が結合されていたり、省略されていたり、より細分化されていたり、ループさせる/させないの違いだけである。特に、「得られた結果と実際の予想とが大きく食い違うこと」は、課題研究や学生実験では起こりにくく、また、そのような“変則的”(実際には“変則”でないほうがおかしいのだが)な事態に対処できるレベルは意外に高いという考えから、「研究結果をフィードバックさせる」というトレーニングをするか否かに大きな違いが現れる。また、(8)-(10)は、学生実験や高等学校の課題研究レベルでは問題になることが殆ど全くなく、検定教科書には解説されていない。
これらの要素をどのようにつなげるのか、どのように偶然的な要素や目標の現実とのズレを実際の研究計画にフィードバックするのかは、研究者の腕や個性、場合によっては価値観や感性にかかわってくる問題である。その意味では、必ずしも実際の研究の現場では必ずしも各要素を直線的に実行する(「『(1)→(2)→(3)→(4)→(5)→(6)→(1)』のループを何度か繰り返したあと、(7)に至る」といった具合に)わけではなく、そうあるべきとも限らない。
また、「プライオリティー」が物を言う研究の世界では、極端な場合過去のデータを見て突然ひらめいてそのまま発表するといった「(8)→(10)」のような話や、(6)の過程を省略し、単なる実験結果の羅列を報告するケースなど、ショートカットや省略が多々あるとされる。また、偶然の発見の決定的な証拠が取れた場合、再現実験を何度か行いながら同時平行的に「それをどのような文脈におくのか」を検討するような流れ、つまり「(9)→(1),(2),(3),(4),(5),(6)→(7)」のようなこともよくあるとされる。さらに、通常は(6)の段階でテーマの分割、整理統合が行われる場合がよくある。優れた研究者の中には、(4),(5)と(6)の間の往復に殆どに労力をつぎ込み、ある程度の結果がたまったところで、(10)に至るものもある。また、実験計画の立案や実験のみを行う人、考察のみを行う人のように分業体制で研究を行っているところもある。実験系の場合には「装置の開発」や「材料の精製」の部分のみで学士、修士、博士の学位が与えられ、場合によってはノーベル賞クラスの評価が与えられることもある。一見、「装置の開発」や「材料の精製」の部分のみを行うことは(4)の段階にのみにとどまっているように見えるが、「装置の開発」や「材料の精製」という問題自体を一つの課題として考えれば概ね上の要素に還元できる場合が殆どである。
その実際
実験系において、実際の卒業研究の現場では、(1)から(4)の段階は指導教官が用意してくれ、場合によっては、(5)はほとんどテクニシャンのおかげ、(6)についてですらほとんど先輩や指導教官の指導のなせるがままというケースもあるといわれるテンプレート:要出典。また、多くの学生、場合によっては未熟な研究者にあっては、「事前によい狙いをさだめること」や「狙いからのズレを適宜フィードバックしてよりよい狙いを定めていくということ」が出来ず、「焦点の定まらない実験データの羅列」に近い”論文”を量産するだけのケースもあるテンプレート:要出典。
一方で、人文系の文献研究や、数学、素粒子理論などでは、研究目的の決定や、調査方法の立案を行えるレベルに到達するまでに一定数の文献を読む等の基礎学習が求められ、上記の(1)~(11)以前に(0)として「基礎基本の勉強」という要素が入るのが通常である。数学、素粒子理論の場合、大学院前期課程ですら、殆どの時間を基礎基本の勉強に割いていて、修了までに新たな知見を得られないどころか、基本的な研究の過程の体験すらできない可能性が低くない。また、後期博士課程の3年次を過ぎても、研究の過程の体験という段階に入れないケースもある。これらのケースにおいては、博士後期を除き、上記の工程を体験せずとも、「在学中に勉強したことのまとめ」という形で、学士、修士論文が受理されることがある。
種類
参考文献
- 文部科学省 平成21年度7月 高等学校学習指導要領解説 理科編[1]
- 小泉治彦 著:「理科課題研究ガイドブック」千葉大学[2]
- California Science Teachers Association [3]による図解 How science works.[4]