回転体
回転体(かいてんたい、solid of revolution)は、数学・工学・製造業において平面図形をそれと同平面に位置する直線(軸)の周りに回転することにより得られる立体図形である。
例
例えば、円に対し、それとは交わらない直線を軸にして回転させた場合、トーラスと呼ばれるドーナツ型の立体ができる。一方、円の中心を通る直線を軸にした場合、球ができる。
直角三角形を斜辺以外の辺を軸に回転させれば、円錐が現れる。鋭角三角形は、頂点から垂線を引けば直角三角形を二つ張り合わせたものになるから、辺を軸に回転させれば複円錐ができる。鈍角三角形も鈍角に対する辺で回転させれば複円錐である。
同様に長方形を辺を軸に回転させれば、回転体として円柱を得る。
回転体の体積
回転体は回転の軸に垂直な平面で切断すれば、その切断面は常に円を描く。したがって回転体の体積は、回転体を軸に垂直な平面で薄くスライスした断片(それはほぼ "円柱" である)の体積を軸の方向へ積分することで計算可能である。
詳しく言えば、軸に沿って変数 h を動かすとき、各断片の断面の半径が r = r(h) であるとすれば πr2 × dh という微小体積をもつ。この断片たちを h に沿って加え合わせたものを考えれば回転体の体積がわかるということである。
たとえば、関数 y = f(x) で xy-平面上に描かれる平面曲線と x 軸が単純閉曲線をつくるとき、それが囲む図形を回転させたときの回転体の体積は次のようである:
- <math>\int_a^b \pi y^2 dx = \int_a^b \pi f(x)^2 dx</math>
ただし、a, b (a < b) は f(x) = 0 の根である。
計算例
半径 r > 0 の球の体積: この球は曲線
- <math>y = \sqrt{r^2-x^2}</math>
(-r ≤ x ≤ r) を x 軸の周りに回転させた回転体であるから
- <math>\int_{-r}^{r} \pi(\sqrt{r^2-x^2})^2 dx =
2 \pi \int_0^r r^2 - x^2 \,dx = 2\pi\left(r^3 - \frac{r^3}{3}\right) = \frac{4}{3}\pi r^3
</math>
一般化
一般には、回転させる図形の次元は気にせず、直線を軸に回転させて得られる(主に高次元の)図形を回転体ということがある。
たとえば、直線を異なる直線を軸にして回転させるとき、円柱面や円錐面、回転双曲面が現れる。この場合は回転面というのが普通である。