尿酸
テンプレート:Chembox 尿酸(にょうさん、uric acid)は、化学式C5H4N4O3の有機化合物である。
代謝経路
尿酸は、キサンチンやヒポキサンチンのようなオキシプリンからキサンチンオキシダーゼ(キサンチンデヒドロゲナーゼ)によって合成される。ヒトや他の霊長類の多くでは、尿酸はプリン代謝の酸化最終生成物である。その他のほとんどの哺乳動物では、尿酸オキシダーゼ(EC 1.7.3.3)によって尿酸はさらにアラントインまで酸化される[1]。
尿酸は鳥類と爬虫類の多くの種で窒素代謝の最終生成物であり、それらの種では固体の尿として排出される。
霊長類進化史と尿酸、ビタミンCとの関係
霊長類のヒト上科では尿酸オキシダーゼが欠損すると共に、霊長類の直鼻猿亜目ではアスコルビン酸(ビタミンC)合成も欠損している[2]。これは尿酸が抗酸化物質として部分的にアスコルビン酸の代用となるためである[2]。尿酸とアスコルビン酸は強力な抗酸化物質(還元剤および酸化防止剤)である。ヒトでは、血漿中の約半分の抗酸化物質は尿酸から来ている。
なお、霊長類の進化は約6500万年前、白亜紀末期頃に始まったと考えられている[3]。
霊長類でL-グロノラクトンオキシダーゼ(ビタミンC合成酵素)の活性が失われたのは約6300万年前であり、直鼻猿亜目(酵素活性なし)と曲鼻猿亜目(酵素活性あり)の分岐が起こったのとほぼ同時である。ビタミンC合成能力を失った直鼻猿亜目にはメガネザル下目や真猿下目(サル、類人猿、ヒト)を含んでいる。ビタミンC合成能力を有する曲鼻猿亜目には、キツネザルなどが含まれる[4]。
霊長類の狭鼻下目であるヒト上科がオナガザル上科から分岐したのは、2800万年から2400万年前頃であると推定されている[5][6]。5種のヒト上科(テナガザル、オランウータン、チンパンジー、ゴリラ、ヒト)の肝臓から尿酸オキシダーゼ活性は検出されなかったが、ヒト上科以外の旧世界のサルと新世界のサルでは尿酸オキシダーゼ活性が検出された。ヒト上科の共通の祖先が旧世界のサルから分枝した際に、尿酸オキシダーゼ活性が消失したものと推定される[7]。尿酸オキシダーゼ活性の消失の意味付けは、尿酸が抗酸化物質として部分的にビタミンCの代用となるためである[2]。しかし、ヒトを含むヒト上科では、尿酸オキシダーゼ活性の消失により難溶性物質である尿酸をより無害なアラントインに分解できなくなっている。尿酸が体内に蓄積すると結晶化して関節に析出して痛風発作を誘発する[8]。
生体における尿酸
排泄物としての尿酸
尿酸は、鳥類や爬虫類の多くの種でタンパク質代謝における最終産物である窒素化合物で、それらの生物から排泄物として体外に出される。
一方、人をはじめとする哺乳類、両生類、軟骨魚類の場合には尿中の主要な窒素化合物は尿素、硬骨魚類の場合はアンモニアである[9][10][11]テンプレート:信頼性要検証。
これは尿酸は尿素に比べ濃縮が可能であり、体内に一時的に保持するにあたって水分をあまり必要としないためで、乾燥への適応だと考えられる。また、硬い殻(閉鎖卵)を有する卵生の動物では、尿を殻の外に排泄できないため、アンモニアでは有害であり、尿素では浸透圧が高くなりすぎ、水にわずかしか溶けない尿酸の形で貯蔵することにより有害性と浸透圧の両方の問題を解決している[12]テンプレート:信頼性要検証(哺乳類でもカモノハシのように原始的な卵生の種は、卵の状態では尿酸の形で排出している)。尿酸は非水溶性であるため、鳥類や爬虫類の糞の白い部分は、糞ではなく尿である。
痛風の原因物質
ヒトではURAT1と呼ばれる尿酸トランスポーターにより近位尿細管で多く(約80%)が尿中から回収される。ヒトの血液中では尿酸濃度は3.6から8.3mg/dLである。菜食主義者は尿酸値が低いという報告がある[13]。血中の尿酸濃度が高くなる病気に高尿酸血症がある。尿酸は、水への溶解度が低いことから、低体温箇所で結晶化しやすくなり、また酸性下でも析出しやすくなり、これが痛風などにも関連する[14]。血液中の尿酸濃度はUAという略号で表されることが多い。
過剰な尿酸は、血管に炎症をもたらすことが近年の研究で判明しており、高尿酸血症は放置すべきではないとの論調が主流を占めつつある[15]。また高インスリン血症やメタボリックシンドロームは血中尿酸値を上昇させ、悪影響を来すことも研究がすすみつつある。
活性酸素と尿酸は、互いを打ち消しあう作用を持ち、どちらかが多すぎても少なすぎても、酸化ストレスや炎症をきたすことが示唆されている[16]。そのため、低尿酸血症も高尿酸血症も医療の介入が必要であると考えられている。
血液検査の参考基準値
項目 | 被験者のタイプ | 下限値 | 上限値 | 単位 | 備考 |
尿酸[17] | 0.18[18] | 0.48[18] | mmol/L | ||
女性 | 2.0[19] | 7.0[19] | mg/dL | ||
男性 | 2.1 [19] | 8.5[19] | mg/dL |
抗酸化物質としての尿酸
尿酸はビタミンCよりもはるかに強力な抗酸化物質であり、体内に一定量存在することにはおおきな意義がある[20][21]テンプレート:信頼性要検証。ヒトの血中に最も高濃度で存在する抗酸化物質は尿酸であり[22] 、ヒト血清中の抗酸化物質全体の約半分を占める[23]。尿酸は、運動ストレス時の抗酸化物質として作用する報告がある[24]。また、ショウジョウバエにおいて酸化傷害に対する防御機構として尿酸合成が亢進している可能性を示唆する報告もある[20]テンプレート:信頼性要検証。
脚注
- ↑ Purine and Pyrimidine Metabolism(Eccles Health Sciences Library, Last modified 12/4/1997)
- ↑ 2.0 2.1 2.2 Peter Proctor Similar Functions of Uric Acid and Ascorbate in ManSimilar Functions of Uric Acid and Ascorbate in Man Nature vol 228, 1970, p868.
- ↑ 高井正成 霊長類の進化とその系統樹 (霊長類の進化を探る)
- ↑ テンプレート:Cite journal
- ↑ サルとヒトとの進化の分岐、定説より最近か ミシガン大 AFPBB News 2010年07月16日
- ↑ Nature2010年7月15日号
- ↑ テンプレート:Cite journal
- ↑ 高木和貴、上田孝典「腺酸分解酵素PEG化ウリカーゼの適応と意義」『高尿酸血症と痛風』18(2),2010,pp41-46
- ↑ にょうそ【尿素】の意味 - 国語辞書(goo辞書)
- ↑ 有馬四郎「兩棲類の發生初期の代謝終産物について : I.蛙尿の化學成分について」『動物学雑誌』61(9),1952-09-15,pp275-277 テンプレート:NAID
- ↑ 多様な生物たち(5) 更新日:2006/12/08
- ↑ げのむトーク(31-40)
- ↑ Kuo CS, Lai NS, Ho LT et al. "Insulin sensitivity in Chinese ovo-lactovegetarians compared with omnivores" Eur J Clin Nutr 58(2), 2004 Feb, pp312-6. PMID 14749752
- ↑ 有病者の歯科治療20.痛風 信州大学医学部歯科口腔外科レジデント勉強会 2000.6.14 上原
- ↑ 『高尿酸血症・痛風の治療ガイドライン』
- ↑ 久留一郎 ほか, Hypertension Frontier 2001; Vol..4: 59-71.
- ↑ Normal Reference Range Table from The University of Texas Southwestern Medical Center at Dallas. Used in Interactive Case Study Companion to Pathologic basis of disease.
- ↑ 18.0 18.1 Last page of テンプレート:Cite book
- ↑ 19.0 19.1 19.2 19.3 Blood Test Results - Normal Ranges Bloodbook.Com
- ↑ 20.0 20.1 根岸、友恵、鈴木利典、濱武有子、藤原 大「酸化傷害に対する内在性防御物質としての尿酸の役割」 研究期間2007年度~2008年度 (科学研究費助成事業データベース)
- ↑ 痛風遺伝子の発見 ~痛風の主要病因遺伝子の同定は世界初:尿酸排泄トランスポーターABCG2~ [PRESS RELEASE] 2009年10月30日 東京大学医学部附属病院
- ↑ テンプレート:Cite journal
- ↑ テンプレート:Cite journal
- ↑ 三上俊夫「152.尿酸は運動ストレス時の抗酸化物質として作用する」『体力科學』49(6),2000-12-01,p742 テンプレート:NAID