多角数
出典: フリー百科事典『ウィキペディア(Wikipedia)』
多角数(たかくすう、テンプレート:Lang-en-short)は、正多角形の形に点を並べたときにそこに含まれる点の総数にあたる自然数である。多角形数ともいう。
例
例えば10個の点は
このように正三角形の形に並べることができるので10は三角数である。また16個の点は
このように正方形の形に並べることができ、16は四角数(平方数)である。
三角数、四角数、六角数の例を以下に示す。
三角数
四角数
六角数
五角数以上では、点を回転対称には並べないことに注意。
一般化
0番目の多角数は全て、形式的に0とみなすことができる。
n番目のp角数を Pp,n とすると上の図から
- <math>P_{p,n+1} - P_{p,n} = (p-2)n + 1\,</math>
となり、したがって Pp,n は等差数列の和
- <math>\begin{align} P_{p,n} &= \sum_{k=0}^{n-1} \left\{ (p-2)k+1 \right\}
\\ &= \frac{1}{2} n \left[1 + \left\{ (p-2)(n-1) + 1 \right\} \right] \\ &= \frac{(p-2)n^2 - (p-4)n}{2} \\ \end{align}</math> となる。
この式から、2番目のp角数はpであり、3番目のp角数は 3(p-1) であることなどが分かる。
なおここで、形式的に「二角数」(p = 2)を考えると、
- <math>P_{2,n} = n \,</math>
となり、自然数列そのものになる。これは、点を直線状に並べることに相当する。ただし古代ギリシャの数学者が直線数と呼んでいたのは、(矩形に並べられることができないことから)素数である。
性質
- 任意の自然数は、p 個の p 角数の和で表せる。これを多角数定理という。
- 1番目の多角数は1、2番目の p 角数は p である。したがって、2以外の自然数はなんらかの多角数である。
- 3番目以降(3番目を含む)の多角数は、合成数である。
- n 番目の p 角数は、n が偶数で p が奇数のときに限り、n の倍数でない。
- n 番目の p 角数と n + 1 番目の p 角数の差は、(p - 2) n + 1 である。
- n 番目の p 角数と n 番目の p + 1 角数の差は、p によらず n だけで決まり、n - 1 番目の三角数に等しい。(次の表を縦に読むと等差数列になっている)
多角数表
名前 | 一般式 | n=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
三角数 | ½(1n² + 1n) | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 | 45 | 55 | 66 | 78 | 91 |
四角数 | ½(2n² + 0n) | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 | 169 |
五角数 | ½(3n² - 1n) | 1 | 5 | 12 | 22 | 35 | 51 | 70 | 92 | 117 | 145 | 176 | 210 | 247 |
六角数 | ½(4n² - 2n) | 1 | 6 | 15 | 28 | 45 | 66 | 91 | 120 | 153 | 190 | 231 | 276 | 325 |
七角数 | ½(5n² - 3n) | 1 | 7 | 18 | 34 | 55 | 81 | 112 | 148 | 189 | 235 | 286 | 342 | 403 |
八角数 | ½(6n² - 4n) | 1 | 8 | 21 | 40 | 65 | 96 | 133 | 176 | 225 | 280 | 341 | 408 | 481 |
九角数 | ½(7n² - 5n) | 1 | 9 | 24 | 46 | 75 | 111 | 154 | 204 | 261 | 325 | 396 | 474 | 559 |
十角数 | ½(8n² - 6n) | 1 | 10 | 27 | 52 | 85 | 126 | 175 | 232 | 297 | 370 | 451 | 540 | 637 |
十一角数 | ½(9n² - 7n) | 1 | 11 | 30 | 58 | 95 | 141 | 196 | 260 | 333 | 415 | 506 | 606 | 715 |
十二角数 | ½(10n² - 8n) | 1 | 12 | 33 | 64 | 105 | 156 | 217 | 288 | 369 | 460 | 561 | 672 | 793 |
十三角数 | ½(11n² - 9n) | 1 | 13 | 36 | 70 | 115 | 171 | 238 | 316 | 405 | 505 | 616 | 738 | 871 |
十四角数 | ½(12n² - 10n) | 1 | 14 | 39 | 76 | 125 | 186 | 259 | 344 | 441 | 550 | 671 | 804 | 949 |
十五角数 | ½(13n² - 11n) | 1 | 15 | 42 | 82 | 135 | 201 | 280 | 372 | 477 | 595 | 726 | 870 | 1027 |
十六角数 | ½(14n² - 12n) | 1 | 16 | 45 | 88 | 145 | 216 | 301 | 400 | 513 | 640 | 781 | 936 | 1105 |
十七角数 | ½(15n² - 13n) | 1 | 17 | 48 | 94 | 155 | 231 | 322 | 428 | 549 | 685 | 836 | 1002 | 1183 |
十八角数 | ½(16n² - 14n) | 1 | 18 | 51 | 100 | 165 | 246 | 343 | 456 | 585 | 730 | 891 | 1068 | 1261 |
十九角数 | ½(17n² - 15n) | 1 | 19 | 54 | 106 | 175 | 261 | 364 | 484 | 621 | 775 | 946 | 1134 | 1339 |
二十角数 | ½(18n² - 16n) | 1 | 20 | 57 | 112 | 185 | 276 | 385 | 512 | 657 | 820 | 1001 | 1200 | 1417 |
二十一角数 | ½(19n² - 17n) | 1 | 21 | 60 | 118 | 195 | 291 | 406 | 540 | 693 | 865 | 1056 | 1266 | 1495 |
二十二角数 | ½(20n² - 18n) | 1 | 22 | 63 | 124 | 205 | 306 | 427 | 568 | 729 | 910 | 1111 | 1332 | 1573 |
二十三角数 | ½(21n² - 19n) | 1 | 23 | 66 | 130 | 215 | 321 | 448 | 596 | 765 | 955 | 1166 | 1398 | 1651 |
二十四角数 | ½(22n² - 20n) | 1 | 24 | 69 | 136 | 225 | 336 | 469 | 624 | 801 | 1000 | 1221 | 1464 | 1729 |
二十五角数 | ½(23n² - 21n) | 1 | 25 | 72 | 142 | 235 | 351 | 490 | 652 | 837 | 1045 | 1276 | 1530 | 1807 |
二十六角数 | ½(24n² - 22n) | 1 | 26 | 75 | 148 | 245 | 366 | 511 | 680 | 873 | 1090 | 1331 | 1596 | 1885 |
二十七角数 | ½(25n² - 23n) | 1 | 27 | 78 | 154 | 255 | 381 | 532 | 708 | 909 | 1135 | 1386 | 1662 | 1963 |
二十八角数 | ½(26n² - 24n) | 1 | 28 | 81 | 160 | 265 | 396 | 553 | 736 | 945 | 1180 | 1441 | 1728 | 2041 |
二十九角数 | ½(27n² - 25n) | 1 | 29 | 84 | 166 | 275 | 411 | 574 | 764 | 981 | 1225 | 1496 | 1794 | 2119 |
三十角数 | ½(28n² - 26n) | 1 | 30 | 87 | 172 | 285 | 426 | 595 | 792 | 1017 | 1270 | 1551 | 1860 | 2197 |