順序体

出典: フリー百科事典『ウィキペディア(Wikipedia)』
実体 (数学)から転送)
移動先: 案内検索

数学における順序体(じゅんじょたい、テンプレート:Lang-en-short)は、その元が全順序付けられたであって、その順序が体の演算と両立するものを言う。歴史的にはヒルベルトヘルダーハーンらを含む数学者たちによって徐々にぼんやりと公理化が進められ、1926年に順序体およびテンプレート:仮リンクに関するテンプレート:仮リンクによって結実する。

順序体は標数 テンプレート:Math でなければならず、任意の自然数 テンプレート:Math は全て相異なる。従って順序体は無限個の元を含まねばならず、有限体は順序付けることができない。

順序体の任意の部分体は、もとの体の順序に関してそれ自身順序体を成す。任意の順序体は有理数体に同型な部分順序体を含む。任意のテンプレート:仮リンク順序体は実数体に同型である。順序体においてテンプレート:仮リンクは非負でなければならない。従って複素数体は(虚数単位 テンプレート:Math の平方が テンプレート:Math だから)順序付けることはできない。任意の順序体は実体である。

定義

順序群の定義の仕方には同値な二種類が存在する。歴史的に最初に考えられたのは、体構造と両立する全順序を与える定義で、これは二項術語としての順序 テンプレート:Math に関する一階の公理化である。アルティンとシュライヤーは1926年に(非負の元全体の成す部分集合としての)正錐を用いた定義を与えた。これは高階の公理化ではあるけれども、正錐を「極大」の前正錐と見る観点からは、体構造と両立する順序を「極値的」な半順序と見るより広い文脈が生み出される。

テンプレート:Mathテンプレート:Math 上の全順序 テンプレート:Math とが両立するとは、この順序が条件

を満足するときに言う。乗法の記号はこれ以降は省略する。

テンプレート:Math の部分集合 テンプレート:Mathテンプレート:Math 上の前正錐 (prepositive cone) あるいは前順序付け (preordering) であるとは、条件

を満足するときに言う[1]。前順序付け テンプレート:Math を持つ体を前順序体 (preordered field) と呼ぶ。テンプレート:Math の非零元全体の成す集合 テンプレート:Mathテンプレート:Math乗法群部分群を成す。さらに加えて、前順序付け テンプレート:Math に対して、テンプレート:Mathテンプレート:Math および テンプレート:Math の合併となるとき、テンプレート:Mathテンプレート:Math正錐 (positive cone) と言い、テンプレート:Math の非零元を テンプレート:Math正の (positive) 元と呼ぶ。テンプレート:Math 上の任意の前順序付けは、ちょうど テンプレート:Math 上の正錐の適当な族の交わりとして得られる。すなわち、正錐は極大な前順序付けである[1]。前順序体 テンプレート:Math 上の (fan) とは、前順序付け テンプレート:Math であって、テンプレート:Mathテンプレート:Math} を含む F の指数 テンプレート:Math の部分群で、かつ テンプレート:Math を含まないならば テンプレート:Math が正錐となる(つまり S が加法について閉じている)という性質を満たすものを言う[2]

与えられた体が、体構造と両立する全順序を備えることと正錐を備えることとは同値であり、体上の両立する全順序と正錐の間の対応は以下のように与えられる。すなわち、両立する全順序 テンプレート:Math が与えられたとき テンプレート:Math なる元全体の成す部分集合 テンプレート:Mathテンプレート:Math の正錐を成す。逆に テンプレート:Math の正錐 テンプレート:Math が与えられたとき、付随する全順序 テンプレート:Mathテンプレート:Math で定義すれば、テンプレート:Mathテンプレート:Math の体構造と両立する。

与えられた体 テンプレート:Math順序体であるとは、それが体構造と両立する全順序、あるいは正錐を備えるときに言う。

順序体の性質

順序体 テンプレート:Math の任意の元 a, b, c, d に対して、

順序体の任意の部分体は、もとの体の順序をそこに制限して得られる順序に関してそれ自身が順序体を成す。最小の部分順序体は(任意の標数 テンプレート:Math の体がそうであるように)有理数体に同型であり、この部分体としての有理数体上の順序は有理数体自身の通常の順序に一致する。順序体の元が必ず部分体としての有理数体の二つの元の間にあるならば、そのような順序体はアルキメデス的であると言う。また、そうでない順序体はテンプレート:仮リンクと呼ばれ、無限小を含む。例えば、実数体はアルキメデス順序体を成すが、超実数体は任意の標準自然数よりも大きい拡大実数を含むから非アルキメデス順序体になる[3]

順序体 テンプレート:Math が実数体となるのは、それがアルキメデスの原理を満足し、かつ テンプレート:Math の空でない任意の上に有界な部分集合が テンプレート:Math 内に上限テンプレート:要曖昧さ回避を持つときである。

順序体上のベクトル空間

順序体上のベクトル空間(特に数ベクトル空間)はいくつか特別な性質を示し、また例えば向き凸性あるいは正定値内積などのような特別な構造を考えることができる。一般の順序体上のベクトル空間について考えられるこれらの性質に関して、テンプレート:Math の場合の議論はテンプレート:仮リンクの項を参照。

順序体の例

順序体の例には以下のようなものがある。

テンプレート:仮リンクの全体は集合ではなく真の類となることを除けば、順序体の公理をすべて満たす。任意の順序体を超現実数体の中へ埋め込むことができる。

どのような体が順序付け可能であるか

任意の順序体はテンプレート:仮リンクである。すなわち テンプレート:Math を非零元の平方和として書くことはできないという性質を持つ[4][5]。逆に、任意の形式的に実な体 (実体) は体構造と両立する順序を入れて順序体にすることができる(この順序は必ずしも一意には決まらない)[6]

有限体あるいはより一般に有限な標数を持つ体は順序体にすることはできない。これは、標数 テンプレート:Math に対して、元 テンプレート:Math が平方数 テンプレート:Mathテンプレート:Math 個の和に書けることによる。また複素数体も順序体にならない。これは仮に順序体となるならば、テンプレート:Math は平方数(もちろん、虚数単位 テンプレート:Math の平方)ゆえ正でなければならないことによる。あるいは p-進数体も順序体にならない。実際、テンプレート:Mathテンプレート:Math の平方根を含み、また奇素数 テンプレート:Math に対する テンプレート:Mathテンプレート:Math の平方根を含む。

順序の誘導する位相

順序体 テンプレート:Math に全順序 テンプレート:Math から誘導されるテンプレート:仮リンクを入れるならば、公理から二つの演算 テンプレート:Math および テンプレート:Math連続となり、テンプレート:Math位相体を成す。

ハリソン位相

ハリソン位相 (Harrison topology) は実体 テンプレート:Math に入る順序付け(正錐)全体の成す集合 テンプレート:Math 上の位相である。各順序は乗法群 テンプレート:Math から テンプレート:Math} の上への群準同型と見做すことができる。二元群 テンプレート:Math} には離散位相を入れ、配置集合 テンプレート:Math にはテンプレート:仮リンクを入れると、テンプレート:Math 上の部分空間の位相が誘導される。ハリソン集合 (Harrison set) テンプレート:Math} はハリソン位相のテンプレート:仮リンクを成す。直積位相空間 テンプレート:Mathテンプレート:仮リンク(つまりコンパクトハウスドルフかつテンプレート:仮リンクな位相空間)で、テンプレート:Math はその閉部分集合、従ってそれ自身ブール空間を成す[7][8]

超順序体

超順序体 (superordered field) は総実代数体であって、その平方和全体の成す集合が扇を成すものを言う[9]

関連項目

注記

テンプレート:Reflist

参考文献

  • 1.0 1.1 Lam (2005) p. 289
  • Lam (1983) p.39
  • テンプレート:Cite web
  • Lam (2005) p. 41
  • Lam (2005) p. 232
  • Lam (2005) p. 236
  • Lam (2005) p. 271
  • Lam (1983) pp.1-2
  • Lam (1983) p.45