ゼーベック効果
ゼーベック効果(ゼーベックこうか、テンプレート:Lang-en-short)は物体の温度差が電圧に直接変換される現象で、熱電効果の一種。逆に電圧を温度差に変換するペルティエ効果もある。類似の現象としてトムソン効果やジュール熱がある。ゼーベック効果を利用して温度を測定することができる(→熱電対)。ゼーベック効果、ペルティエ効果、トムソン効果は可逆であるが、ジュール熱はそうではない。
ゼーベック効果は、1821年にエストニアの物理学者トーマス・ゼーベックによって偶然発見された。ゼーベックは金属棒の内部に温度勾配があるとき、両端間に電圧が発生することに気づいた。
また、2 種類の金属からなるループの接点に温度差を設けると、近くに置いた方位磁針の針が振れることも発見した。これは2種類の金属が温度差に対して異なる反応をしたため、ループに電流が流れ、磁場を発生させたためである。
ゼーベック効果
異なる金属または半導体に温度差を設けると電圧が発生する。この電圧は温度差 1 K あたり数 μV 程度の大きさである。
右の回路について、発生する電圧は次の式から求められる。
<math>S_\mathrm{A}</math> と <math>S_\mathrm{B}</math> はそれぞれ金属 A, B のゼーベック係数、<math>T_1</math> と <math>T_2</math> は 2 つの接点の温度である。ゼーベック係数は非線型で、導体の温度、材質、分子構造に依存する係数である。ゼーベック係数が測定する温度範囲で一定であると見なせるならば、上の式は下の式のように近似することができる。
このような熱電対を使えば、温度差を直接測定したり、一方の温度を既知のものに定めることでもう一方の絶対温度を測定することができる。
ゼーベック効果は2つの効果、荷電粒子の拡散およびフォノンドラッグによって起こる。
ゼーベック係数 (Thermopower)
2 点間の温度差が小さい場合、
そして端点間の電位差 ΔV とすると、熱電対全体のゼーベック係数は次のように定義される:
電場 E と温度勾配 <math>\nabla T</math> を使って書き直すと、
超伝導体のゼーベック係数は 0 であり、これを使って熱電対を作ると、他の物質のゼーベック係数を直接測定することができる。熱電対全体のゼーベック係数が対象とする物質のそれとなる。
半導体では、ゼーベック係数の符号によってキャリアが電子(電荷が負)か正孔(電荷が正)かを判断することができる。
荷電粒子の拡散
物質中の帯電したキャリア(例えば金属中の電子、半導体中の電子と正孔、イオン導体中のイオン)は、導体の一端が異なる温度のときそちらへ拡散しようとする。熱い端にいる熱いキャリアは、熱い端では熱いキャリアの密度が薄いため、冷たい端のほうへ拡散する。同様に、冷たいキャリアは熱い端のほうへと拡散する。
導体を平衡状態に達するまで放っておくと、熱は導体全体に一様に分配される。熱を蓄えたキャリアによる熱の輸送は熱流と呼ばれる。帯電したキャリアが動く場合、これは電流そのものである。
導体の両端がそれぞれ一定の温度に保たれていれば、キャリアは一定の割合で拡散する。もし熱いキャリアと冷たいキャリアが等しく拡散するならば、電荷の正味の移動はゼロである。しかし拡散する電荷は、物質中の不純物、欠陥、そして格子振動(フォノン)によって散乱を受ける。 散乱がエネルギーに依存するならば、温度の異なるキャリアは異なる割合で拡散することになる。このため一方の端でキャリアの密度が高くなり、プラスとマイナスに帯電した両端の間には電位差が生じる。
この電位差は拡散の不平等を妨げるように働く。そこで一方向に拡散するキャリアの総数から電位差を受けて逆方向へ移動するキャリアの総数を差し引いて平衡状態に達する。物質の熱電効果は不純物や欠陥、構造の変化の影響を強く受ける。熱電効果は多くの異なる効果からなる現象である。
フォノン・ドラッグ
フォノンはいつも局所的な熱平衡にあるわけではない。温度勾配があるとそれに従って運動する。その間に電子や他のキャリアとの相互作用、および格子欠陥の影響で運動量を失う。もしフォノン-電子相互作用が優勢ならば、フォノンは電子を物体の端から端まで押し動かしながら、その過程で運動量を失っていく。この過程はすでにある熱電場をさらに強めるように働く。フォノン・ドラッグの寄与はフォノン-電子散乱が顕著となる温度領域で重要になる。それはおよそ次のようなオーダーである。
<math>\theta_D</math> はデバイ温度である。より低温ではフォノン・ドラッグを担うフォノン自体が少なく、より高温では電子との相互作用よりも先にフォノン同士の相互作用で運動量を失ってしまう。
関連項目
- 熱電変換素子
- ジュールの法則
- 熱輸送
- 焦電効果 - 熱による結晶内部電場の生成de:Thermoelektrizität#Seebeck-Effekt