サル目

出典: フリー百科事典『ウィキペディア(Wikipedia)』
2014年7月28日 (月) 11:58時点におけるMasaqui (トーク)による版 (進化: 出典の無い記述を削除。)
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
移動先: 案内検索

テンプレート:生物分類表

ファイル:Range of Non-human Primates.png
ヒトを除くサル目の分布

サル目(サルもく)は脊椎動物亜門 哺乳綱の1目。霊長目(れいちょうもく)とも呼ばれる[1]キツネザル類オナガザル類類人猿ヒトなどによって構成され、約220種が現生する。

生物学的には、ヒトはサル目の一員であり、霊長類(=サル類)の1種にほかならないが、一般的には、サル目からヒトを除いた総称を「サル」とする。

分布

(以下の記述はヒトを除いたサル目の種に関するものである)

熱帯系の動物であり、その分布は熱帯域に集中する。東アジアには温帯域まで分布する種があり、特にニホンザルは最も北に分布するサルとして有名である。曲鼻猿亜目及びメガネザル類アジアアフリカの熱帯域、広鼻猿類中南米の熱帯、類人猿を含む狭鼻猿類アジアアフリカの熱帯域から温帯域の一部にかけて分布している。ヨーロッパにはほとんど棲息せず、ジブラルタル海峡ごしにバーバリーマカク1種が棲息するのみである。また、北アメリカにも分布しない。

形態

体重100g以下のコビトガラコ (Galago demidovii) から、200kgを超すゴリラまで、多様な種が属している。

サル目は、哺乳類としては比較的基本的な体制を維持している。などには大きな特殊化は起こっていない。その中で、サル類を特徴づけるのは、以下のような点である。

  • 5本のをもち、親指が他の4本と多少とも対向しているため、物をつかむことができる。
  • 前肢と後肢の指の爪は、ヒトを含めた狭鼻下目のすべての種ではすべての指の爪が平爪である。曲鼻猿亜目と広鼻下目の一部では平爪のほかに鉤爪をそなえる種もある。
  • の正面に位置しており、遠近感をとらえる能力に優れている。

これらの特徴は、樹上生活において、正確に枝から枝に飛び移るために不可欠な能力である。多くの樹上性の哺乳類では、鉤爪を引っかけて木登りをするが、サル類の平爪はこれをあきらめ、代わりに指で捕まるか引っかかるかする方向を選んだものである。また、それが指先の器用さにもつながっている。

  • 直鼻猿亜目真猿下目狭鼻下目は3色型色覚を有し、緑色のの間から、さまざまな色をした果実などを見つけるのに有利になっている。その他の霊長類は特にオスで2色型色覚にとどまっている種が大半である。色覚の詳細については後述する。

また、

  • 頭部の前方に眼が並び、その面がやや平らになって顔面を形成する。往々にしてこの部分には毛がなく、皮膚が露出する。
  • 大脳がよく発達する。

そして個体間で表情や声によって互いに情報交換をするものが多い。

生態

曲鼻猿類はキツネザル類に昼行性が多いのを除けば夜行性がほとんどだが、直鼻猿類はメガネザル類と広鼻猿に属するヨザル類を除いてほぼ全てが昼行性である。生活環境は樹上生活から地上生活まで幅広い。

食性も昆虫食、果実食、草食など、多岐にわたる。ただし、全体としてみれば、樹上性のものが多い。地上性のものはそこから派生したと考えられる。

分類

「霊長」という言葉において、霊は魂や幽霊という漢字そのものの意味より、優れたもの、不思議な力を持っているという意味が強い。つまり、これはヒトや、ヒトを含むサルの仲間を、動物の進化の最終形態とする認識から付けられた名前である。英語名のPrimateも、大主教や最高位を意味する単語であり、やはり同様の観点から付けられた名前である。

かつては、比較的「原始的」なキツネザル類・ロリス類・メガネザル類をまとめて「原猿類原猿亜目)」 Prosimii、それ以外のいわゆるサルらしいサルを「真猿類真猿亜目)」 Anthropoidea, Simiiformes としていたが、研究の進展により、メガネザルがいわゆる原猿類の他のグループよりも真猿類により近いことが判明した。このことから、現在ではキツネザル類・ロリス類をまとめて「曲鼻猿類(曲鼻猿亜目、曲鼻類、曲鼻猿亜目)」、メガネザル類を含むその他の霊長類を「直鼻猿類(直鼻猿亜目、直鼻類、直鼻亜目)」と呼び、正式な分類体系では、「原猿類」という名称は用いなくなっている[2]

800px

(ヒト科の分類については、最近多様な意見が提出され、研究者の間でも意見の一致を見ていない)

種の保全状態評価

進化

テンプレート:Clade

霊長類の最古の化石は、白亜紀末期の北アメリカ西部から発見されており、プレシアダピス類(偽霊長類)と呼ばれる。このように、霊長類の進化は約6500万年前、白亜紀末期頃に始まったと考えられている[3]

新生代に入り暁新世になるとアダピス類とオモミス類が繁栄した。いずれもまだ原始的な種類で、アダピス類は後の曲鼻猿類に、オモミス類が直鼻猿類に進化したと考えられる。直鼻猿亜目と曲鼻猿亜目の分岐と同時期の6300万年前に直鼻猿亜目はL-グロノラクトンオキシダーゼ(ビタミンC合成酵素)の酵素活性を失っている[4]。 アダピス類とオモミス類はヨーロッパと北アメリカに分布したが、何らかの環境要因によって北アメリカの霊長類は絶滅し、以降、ユーラシアとそれに近接していたアフリカという旧世界の大陸を舞台に霊長類の進化は進んだ。曲鼻猿類の一部は海によって他の大陸から隔絶されていたマダガスカル島にアフリカから進出し(恐らくは流木等に掴まっての漂着)、キツネザル類に進化していった。

その後、直鼻猿類が中新世にはアジア・アフリカに住む狭鼻猿類と南アメリカの広鼻猿類とに分かれる。上述のように北アメリカの猿類は絶滅したので、南米の広鼻猿類の祖先はアフリカから渡って来たとの説が有力であるが(当時、アフリカ大陸と南米大陸は既に分裂していたが、両大陸間の大西洋は現在と比較すれば狭く、距離は近かった。そのため小型の猿類ならば流木等を使って漂着できた可能性がある)、北米の猿類の一部が絶滅前に南米に移動して進化した可能性も考えられる。

ファイル:Cone-response.png
人間の錐体細胞 (S, M, L) と桿体細胞 (R) が含む視物質の吸収スペクトル

霊長類真猿下目狭鼻下目旧世界ザル)と広鼻下目新世界ザル)とが分岐したのは3000-4000万年前と言われている[5][6]

脊椎動物色覚は、網膜の中にどのタイプの錐体細胞を持つかによって決まる。魚類両生類爬虫類鳥類には4タイプの錐体細胞(4色型色覚)を持つものが多い。よってこれらの生物は長波長域から短波長域である近紫外線までを認識できるものと考えられている。一方ほとんどの哺乳類は錐体細胞を2タイプ(2色型色覚)しか持たない。爬虫類の祖先から枝分かれした哺乳類の祖先は当初は4タイプ全ての錐体細胞を持っていたと思われるが、2億2500万年前には、最初の真の哺乳類と言われるアデロバシレウスが出現した。これら初期の哺乳類は(恐竜などの爬虫類との競争を避けたことで)主に夜行性であったため、色覚は生存に必須ではなかった。結果、4タイプのうち2タイプの錐体細胞を失い、青を中心に感知するS錐体と赤を中心に感知するL錐体の2錐体のみを保有するに至った。これは赤と緑を十分に区別できないいわゆる「赤緑色盲」の状態である。この色覚が哺乳類の子孫に遺伝的に受け継がれることとなった[7]

ヒトを含む旧世界の霊長類(狭鼻下目)の祖先は、約3000万年前、X染色体にL錐体から変異した緑を中心に感知する新たなタイプの錐体(M錐体)視物質の遺伝子が出現し、ヘテロ接合体の2本のX染色体を持つメスのみが3色型色覚を有するようになり、さらにヘテロ接合体のメスにおいて相同組換えによる遺伝子重複変異を起こして同一のX染色体上に2タイプの錐体視物質の遺伝子が保持されることとなりX染色体を1本しか持たないオスも3色型色覚を有するようになった。これによって、第3の錐体細胞が「再生」された。3色型色覚はビタミンCを豊富に含む色鮮やかな果実等の発見に有利だったと考えられる[7][5]

時代を下ってヒトの色覚を鑑みるに、ヒトが属する狭鼻下目のマカクザル色盲がヒトよりも非常に少ないことを考慮すると、ヒトの祖先が狩猟生活をするようになり3色型色覚の優位性が低くなり、2色型色覚の淘汰圧が下がったと考えられる[7]。色盲の出現頻度は狭鼻下目のカニクイザルで0.4%、チンパンジーで1.7%である[5]。広鼻下目のヨザルは1色型色覚であり、ホエザルは狭鼻下目と同様に3色型色覚を再獲得している[8]テンプレート:信頼性要検証が、これらを除き残りの新世界ザル(広鼻下目)はヘテロ接合体のX染色体を2本持つメスのみが3色型色覚を有し、オスは全て色盲である。これは狭鼻下目のようなX染色体上での相同組換えによる遺伝子重複の変異を起こさなかったためである[5]。ヒトは上記のような初期の哺乳類と霊長目狭鼻下目の祖先のX染色体の遺伝子変異を受け継いでいるため、L錐体のみを保持したX染色体に関連する赤緑色盲が伴性劣性遺伝をする。男性ではX染色体の赤緑色盲の遺伝子を受け継いでいると色盲が発現し、女性では2本のX染色体とも赤緑色盲の遺伝子を受け継いでいる場合に赤緑色盲が発現する[9]。なお、日本人では男性の4.50%、女性の0.165%が先天赤緑色覚異常で、白人男性では約8%が先天赤緑色覚異常であるとされる。

狭鼻下目広鼻下目の分岐からさらに時代を下って、直鼻猿類の狭鼻下目であるヒト上科オナガザル上科から分岐したのは、2800万年から2400万年前頃であると推定されている[10][11]。ヒト上科(テナガザルオランウータンチンパンジーゴリラヒト)の共通の祖先が旧世界のサルから分枝した際に、尿酸オキシダーゼ活性が消失したものと推定される[12]。尿酸オキシダーゼ活性の消失の意味付けは、尿酸が抗酸化物質として部分的にビタミンCの代用となるためである[13]。しかし、ヒトを含むヒト上科では、尿酸オキシダーゼ活性の消失により難溶性物質である尿酸をより無害なアラントインに分解できなくなっている。

その後の人類への進化については人類の進化を参照のこと。

人間との関係

日本の霊長類研究

第二次世界大戦後、今西錦司らが宮崎県幸島(こうじま)および高崎山で野生ニホンザル群の餌付けに成功して以来、日本の霊長類研究は飛躍的な発展を遂げた。今西らのニホンザルの文化的行動についての研究は世界中から注目され、その後の霊長類研究の方向性に重大な指針を与えた。

その後もニホンザルにとどまらず、伊谷純一郎など多くの日本人が、ゴリラチンパンジーボノボなどの類人猿をはじめ、東南アジアからインドにかけてのオナガザル南米における新世界ザルなど、ほとんどすべてのサルを網羅したフィールドワークを行い、先導的な研究を続けている。

日本のサル学は生態学的研究だけでなく、テンプレート:独自研究範囲生理学遺伝学、形態学、運動学など多岐に渡り、主に京都大学大阪大学において今日も活発な研究がなされている。

脚注

テンプレート:Sisterlinks

  1. 元の位置に戻る 1988年文部省(現・文部科学省)による『学術用語集 動物学編』の改訂以降、前者の呼び方が正式とされている。ただし、この呼称改定は、必ずしも十分な議論と合意形成の上で決定されたものではなく、現在も議論を呼んでいる。哺乳類#目名の問題を参照。
  2. 元の位置に戻る 松沢哲郎・高井正成・平井啓久(2007)「霊長類学への招待」,京都大学霊長類研究所 編『霊長類進化の科学』京都大学学術出版会.ISBN 978-4-87698-723-8
  3. 元の位置に戻る 高井正成 霊長類の進化とその系統樹 (霊長類の進化を探る)
  4. 元の位置に戻る テンプレート:Cite journal
  5. 以下の位置に戻る: 5.0 5.1 5.2 5.3 三上章允霊長類の色覚と進化2004年9月18日。 京都大学霊長類研究所 東京公開講座「遺伝子から社会まで」のレジュメ
  6. 元の位置に戻る テンプレート:Cite journal
  7. 以下の位置に戻る: 7.0 7.1 7.2 岡部正隆、伊藤啓 「1.4 なぜ赤オプシン遺伝子と緑オプシン遺伝子が並んで配置しているのか「第1回色覚の原理と色盲のメカニズム」 『細胞工学』7月号をWEBに掲載。
  8. 元の位置に戻る 研究の背景 テンプレート:リンク切れ
  9. 元の位置に戻る 岡部正隆、伊藤啓 「1.6 女性で赤緑色盲が少ない理由「第1回色覚の原理と色盲のメカニズム」 『細胞工学』7月号をWEBに掲載。
  10. 元の位置に戻る サルとヒトとの進化の分岐、定説より最近か ミシガン大 AFPBB News 2010年07月16日
  11. 元の位置に戻る Nature2010年7月15日号
  12. 元の位置に戻る テンプレート:Cite journal
  13. 元の位置に戻る Peter Proctor Similar Functions of Uric Acid and Ascorbate in ManSimilar Functions of Uric Acid and Ascorbate in Man Nature vol 228, 1970, p868.

関連項目

外部リンク

テンプレート:哺乳類

テンプレート:Link GA