1の冪根
出典: フリー百科事典『ウィキペディア(Wikipedia)』
(1の原始累乗根から転送)
1の冪根(いちのべきこん)、または1の累乗根(いちのるいじょうこん)は、数学において、冪乗して 1 になる(冪単である)ような数のことである。すなわち、ある自然数 n が存在して
- zn = 1
となる z のことである。通常は複素数の範囲で考えるが、場合によっては p-進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。
自然数 n に対し、m (< n) 乗しても決して 1 にならず、n 乗して初めて 1 になるような 1 の冪根は n 乗根として原始的であるという。自然数 n を固定せず、1 の原始 n 冪根あるいは 1 の原始 n 乗根として得られる数を総称し、1の原始冪根(いちのげんしべきこん)、または1の原始累乗根(いちのげんしるいじょうこん)という。
1の原始冪根
複素数の範囲では、1 の原始 n 乗根は一つではない。ド・モアブルの定理より、1 の原始 n 乗根の一つは
- <math>\xi_n =\cos \frac{2\pi}{n} +i\sin \frac{2\pi}{n}</math>
で与えられることが分かる。この時、ξn の共役複素数 ξn も 1 の原始 n 乗根である。n と互いに素な自然数 m に対して ξnm は 1 の原始 n 乗根であり、φ(n) 個(オイラーのφ関数)存在する。
方程式 xn = 1 を考える。この方程式の根は、ド・モアブルの定理より、
- <math>x=\cos \frac{2\pi k}{n} +i\sin \frac{2\pi k}{n} \quad (0\le k\le n-1)</math>
であるが、1 の原始 n 乗根 ξn を一つ選べば、
- <math>x= {\xi_n}^k \quad (0\le k\le n-1)</math>
と書くことができる。
また上記のように根を三角関数で表すことは容易であるが、それが根号を用いて表示できること、つまり方程式が代数的にも可解であることはガウスにより証明された。
1の原始冪根の例
以下、i は虚数単位である。
- ξ2 = −1
- <math>\xi_3 =\frac{-1\pm \sqrt{3} i}{2}</math>(しばしば ω と書かれる)
- ξ4 = ±i
性質
- 1 の冪根は全て、ガウス平面における単位円上にある。また概要で述べたことは 1 の n 冪根の全体が位数 n の巡回群となることを示している。
- a を複素数とするとき、a の n 乗根を任意に一つ選んで n√a と記せば、1 の n 乗根に各々 n√a を掛けたものが複素数係数の方程式 xn − a = 0 の根の全体となる。
- 1 の n 乗根をガウス平面上に表し、線分で結ぶと単位円に内接する正 n 角形となる。これは 1 以外の 1 の原始 n 乗根の一つを ξn として以下の式が成り立つことと同じである:
- <math>\sum_{k=0}^{n-1} \xi_n^k =1+\xi_n +{\xi_n}^2 +\cdots +{\xi_n}^{n-2} +{\xi_n}^{n-1} =0</math>