シグナル伝達
本項においては、生体内におけるシグナル伝達(シグナルでんたつ; signal transduction)機構について記述する。
いかなる生命も周囲の環境に適応しなければならず、それは体内環境においても、個々の細胞においてすらも同様である。そしてその際には、何らかの形で情報を伝達しなければならない。この情報伝達機構をシグナル伝達機構と称し、通常、様々なシグナル分子によって担われる。それらへの応答として、細胞の運命や行動は決定される。
目次
伝達機構の各段階
シグナル伝達の基本的な流れとしては、細胞膜上・細胞質中の因子が次々にシグナルを受け渡しながら他の経路とも影響し合い(「クロストーク」という)、最終的には核内の転写因子による特定遺伝子の転写調節(さらにそれによる細胞の変化)や、アポトーシスによる細胞死などの効果をもたらす、というものとなる。
この流れは、基本的に、細胞間で行なわれるものと、細胞内で行なわれるものとに分けることができる。この場合、細胞膜上の受容体において、細胞外シグナルから細胞内シグナルへの変換が行なわれる。細胞外シグナルの媒体は、ホルモンに代表されるようなシグナル分子であり、これに対し、細胞内シグナル分子はセカンドメッセンジャーと通称される。ただしステロイドホルモンなどの場合は、細胞外シグナル分子が細胞膜を透過し、そのまま細胞内シグナル分子として機能し、細胞質内の受容体に働きかけて、直接転写を制御する。このような反応は1ミリ秒ほどの時間で起きる。
多くの場合、最初の刺激から過程が進むにつれ、関与する酵素や分子の数が増大する。このような反応の連鎖は「カスケード」と呼ばれ、弱い刺激から大きな反応を誘導すること(増幅作用)ができる。
細胞間シグナル伝達
細胞間シグナル伝達の方法はおおよそ4つに分類される。
- 内分泌型
- シグナルを最も広く伝えられる方法で、シグナル分子を血流中(植物の場合は導管液か篩管液中)に放出して全身に伝えるものである。このときのシグナル分子をホルモンという。
- 傍分泌型
- パラクリン型とも称する。内分泌型より狭い範囲の伝達に用いられるもので、このときのシグナル分子は血流中ではなく細胞外液中に拡散するために分泌した細胞周辺のみに留まり、近隣細胞への局所仲介物質として機能する。
- 自己分泌型
- オートクリン型とも称する。基本的には傍分泌型と同様だが、この場合シグナルを受けるのは分泌した細胞自身である。
- 接触型
- 最も直接的な短距離間の伝達で、分泌性の分子は放出されず、シグナル細胞の細胞膜に結合しているシグナル分子が、標的細胞の細胞膜に結合している受容体分子に結合することで、情報が伝達される。
細胞間伝達から細胞内伝達への変換
シグナル伝達で最も重要なのは、情報の変換過程である。体内においては、情報発信細胞から発信されたシグナル分子はたいてい標的細胞が持つ受容体タンパクによって検出されて細胞内シグナルに変換され、遺伝子発現や酵素活性の変化など、様々な応答を返す。このときシグナル分子は受容体タンパクと特異的に結合することから、リガンドとして働いていることになる。
細胞外シグナル分子は大きく2つに分類できる。
- 疎水性の高いもの
- 容易に細胞膜を透過できるため、直接内部に入って細胞内酵素を活性化又は不活性化するか、遺伝子発現を調節する細胞内受容体タンパクと結合する。ステロイドホルモンや甲状腺ホルモンなどがこれである。
- これらは特異的に結合するので、リガンドとして機能している。それらホルモンの細胞内受容体はホルモンとの結合によって活性化され、核内に移動して直接に標的遺伝子の転写を調節する。
- 親水性のもの
- 細胞膜を透過できないため、情報を膜越しに伝達するには標的細胞の細胞膜にある受容体に依存する。
- 受容体タンパクはシグナル分子の受容によって活性化し、新たな細胞内シグナルを生み出す。細胞内シグナルは一連の反応を惹起し、その最終的な結果が細胞の応答となる。
細胞内シグナル伝達
細胞膜上の受容体は、下記の3種類に大別される。これらの違いは、細胞外シグナル分子がそれに結合したときに生じる細胞内シグナルにある。
- イオンチャネル連結型受容体
- 膜を横切ってイオンの流れが起こって膜の内外での電位差に変化が生じ、電流を生じる。
- Gタンパク質共役受容体
- Gタンパク質を活性化してそのサブユニットを放出し、それを通じて細胞膜のなかの標的となる酵素やイオンチャネルに作用する。
- 酵素連結型受容体
- シグナル分子との結合で活性化し、酵素として働いたり、細胞内酵素と共同作業をしたりする。
細胞膜上の受容体が受けたシグナルは、細胞内シグナル分子:セカンドメッセンジャーを使った巧妙な伝達系で伝えられていく。この伝達系:細胞内シグナル伝達系には次のような重要な機能がある。
- シグナルを変型または変換して、伝達に適した、応答を引き出せる形の分子にする。
- シグナルを受領したところから、応答の生ずるところまで伝達する。
- しばしばシグナルを増幅し、大きな応答を引き起こす。
- シグナルを配分し、いくつかの反応系に同時に影響を及ぼす。
- シグナルの効果を細胞内外の条件に合わせて調節できる。
このセカンドメッセンジャーにはcGMP,cAMP,カルシウムイオンなどの小分子もあるが、その大部分はタンパク質である。これらのタンパク質の多くは分子スイッチとして機能する;つまり、シグナルを受けると活性化し、伝達経路のほかのタンパク質を刺激するのである。スイッチタンパクのかなりの部分はリン酸化によってその活性が切り替えられる。
シグナル伝達経路の要素と様式
シグナル伝達の各段階を担う要素(分子)は様々であるが、およそ次のように分類できる。
- セカンドメッセンジャー:cAMP、cGMP、カルシウムイオン、イノシトール三リン酸、ジアシルグリセロールなどの低分子化合物。それぞれ特異的なタンパク質に結合してその活性を変化させることでシグナルを伝える。
- セカンドメッセンジャーを合成する酵素(cAMPを合成するアデニル酸シクラーゼ(adenylate cyclase; アデニレートサイクレース)や、フォスフォリパーゼ(phospholipase; フォスフォライペース)など)や、カルシウムイオンを細胞質に透過させるイオンチャネル。
- タンパク質リン酸化酵素(プロテインキナーゼ):特定のタンパク質をリン酸化してその活性を変化させることでシグナルを伝える。リン酸化する位置によってチロシンキナーゼやセリン/スレオニンキナーゼなどに分けられるが、基質特異性は非常に多種多様である。経路上の位置も細胞膜上の受容体そのものから、経路の途中、転写因子を活性化するものなどがある。細胞増殖因子やインスリンの受容体自体あるいは受容体と結合するエフェクタータンパク質(チロシンキナーゼ)、糖代謝などの調節に関るAキナーゼ(cAMPにより活性化される)、いろいろな経路に関与するCキナーゼ(カルシウムイオンとジアシルグリセロールにより活性化される)や、細胞増殖制御に関わるMAPキナーゼカスケードなどがよく知られる。
- タンパク質脱リン酸酵素(プロテインフォスファターゼ):キナーゼと逆に、リン酸除去反応を行う。
- GTP結合タンパク質(Gプロテイン):GTPとその加水分解産物GDPを結合した状態で、それぞれオン・オフとして働く分子スイッチ。Gタンパク質共役受容体(GPCR)に結合して働くGタンパク質と、がん遺伝子rasの産物(Rasタンパク質)に代表される低分子型GTP結合タンパク質に分けられる。アデニル酸シクラーゼやプロテインキナーゼにシグナルを伝える。
- タンパク質間の特異的結合:一部のサイトカインの受容体は、受容体同士、あるいは下流のタンパク質(エフェクター)と結合して複合体を作ることで活性を変化させシグナルを伝える。
- カスパーゼ:プロテアーゼの一種で、アポトーシスを制御するシグナル伝達系でカスケードを構成し、下流のタンパク質を開裂することで活性化する。
シグナル伝達経路の図示
シグナル伝達経路(パスウェイ)あるいはそれらからなるネットワークは、代謝マップに似た有向グラフで図示される。ノードがシグナル伝達に関与する分子を、エッジがそれらの間の反応すなわち個別のシグナルを示す。
参考文献
外部リンク
- KEGG PATHWAY Databaseシグナル伝達パスウェイマップ(3. Environmental Information Processingを見よ)
- 情報伝達経路
- 神経細胞とシグナル伝達 (ビジュアル生理学 内の項目)