放射年代測定
出典: フリー百科事典『ウィキペディア(Wikipedia)』
放射年代測定(ほうしゃねんだいそくてい、テンプレート:Lang-en-short)とは、原子核崩壊による核種変化、または放射線による損傷を利用して、岩石や化石の年代(形成以降の経過年数)を測定することである。
昔は測定された年代を絶対年代と言っていたこともあったが、現在は放射年代と言う。これは、年代測定の方法や試料の性質により、測定された年代の意味が異なることにより、絶対的な年代ではないことによる。従って、その解釈は慎重に行なう必要がある。
概要
放射年代測定には、大きく分けて2種類の方法がある。それが、特定の放射性核種の崩壊を利用する方法と、自然放射線による固体物質内の損傷を利用する方法である。
特定の放射性核種の崩壊を利用する方法
- カリウム - アルゴン法[1]
- アルゴン - アルゴン法[2]
- ウラン - 鉛法 (U-Pb)
- ルビジウム - ストロンチウム法 (Rb-Sr)
- ヘリウム-ヘリウム法 (He-He)
- ヨウ素-キセノン法 (I-Xe)
- ランタン-バリウム法 (La-Ba)
- 鉛-鉛法 (Pb-Pb)
- ルテチウム-ハフニウム法 (Lu-Hf)
- ネオン-ネオン法 (Ne-Ne)
- レニウム-オスミニウム法 (Re-Os)
- サマリウム-ネオジム法 (Sm-Nd)
- ウラン-鉛-ヘリウム法 (U-Pb-He)
- ウラン-トリウム法 (U-Th)
- ウラン-ウラン法 (U-U)
- ヨウ素129法 - ウランの放射壊変や宇宙線等、自然から供給される半減期1,570万年であるヨウ素129とヨウ素127の存在度比を利用する。
- 炭素14法(放射性炭素年代測定) - 半減期約5,730年の炭素14を使用する。地層の中から産出した貝殻、埋れ木、木炭、泥炭などの有機物を対象として測定され、年代の特定には他の手法を併用した総合的な分析が行われる。±50年くらいの精度である。
上記の方法では、対象とする核種が移動しなくなった時点が年代の出発点となる。たとえば、炭素14法では、生物が死んで外界と物質交換を行わなくなった時点である。それ以外の多くの方法では、鉱物が結晶化した時点である。ただし、火成岩・変成岩がゆっくり冷えた場合などは、結晶化後も拡散等による元素移動があるので、ある程度冷却が進んだ時点に相当する。ある温度で元素移動がなくなったとみなすことができる場合、その温度を閉鎖温度という。
一般に、N0 : 出発時点での放射性元素の個数、N : 出発時点から時間 t 後の核の残数、T : 半減期 としたとき、
- <math>N=N_0 \left(\frac{1}{2} \right)^{t/T}</math>
自然放射線による固体物質内の損傷を利用する方法
- フィッショントラック法(FT法)
- 熱ルミネッセンス法(TL法)
- 電子スピン共鳴法(ESR法)
放射線による損傷は、熱によって回復することが知られている。したがって、これらの方法における年代の出発点は、特定の温度(リセット温度という)よりも冷えた時点、または固体化・結晶化した時点となる。