ブール代数
出典: フリー百科事典『ウィキペディア(Wikipedia)』
ブール代数(ブールだいすう、boolean algebra)またはブール束(ブールそく、boolean lattice)とは、ジョージ・ブールが19世紀中頃に考案した代数系の一つである。ブール代数の研究は束の理論が築かれるひとつの契機ともなった。
論理回路の設計には必須の知識である。組み合わせ回路(論理回路#組み合わせ回路)はブール代数の式で表現できる。
定義
ブール代数(ブール束)とは束論における可補分配束(complemented distributive lattice)のことである。
集合 L と L 上の二項演算 ∨(結び(join)と呼ぶ),∧(交わり(meet)と呼ぶ)の組 <L;∨,∧> が以下を満たすとき分配束(distributive lattice)と呼ぶ。
- 冪等則:x ∧ x = x ∨ x = x 、
- 交換則:x ∧ y = y ∧ x 、x ∨ y = y ∨ x 、
- 結合則:(x ∧ y)∧ z = x ∧(y ∧ z) 、(x ∨ y)∨ z = x ∨(y ∨ z) 、
- 吸収則:(x ∧ y)∨ x =x 、(x ∨ y)∧ x = x 、
- 分配則:(x ∨ y)∧ z = (x ∧ z)∨(y ∧ z) 、(x ∧ y)∨ z = (x ∨ z)∧(y ∨ z) 、
さらにL の特別な元 0 ,1 と単項演算 ¬ について、以下が成り立つとき <L;∨∧,¬> を可補分配束(ブール束)と呼ぶ。
- 補元則: x ∨ ¬x = 1, x ∧ ¬ x = 0。
典型的な例は、台集合として特別な2つの元 0 , 1 のみの2点集合 {0, 1} からなるものであり、コンピュータの動作原理の理論としても知られている。 この代数の上では排他的論理和 (xor) や否定論理積(nand)など応用上重要な演算子が ∧、 ∨、 ¬ の組み合わせで記述される(∧ または ∨ も ¬ と残りの1つの組み合わせで記述される。)。
関連項目
参考文献
外部リンク
en:Boolean algebra (structure) fr:Algèbre de Boole (structure) he:אלגברה בוליאנית (מבנה אלגברי) ko:불 대수 zh:布尔代数