粒子状物質

出典: フリー百科事典『ウィキペディア(Wikipedia)』
2014年5月11日 (日) 10:08時点における219.106.0.214 (トーク)による版 (関連項目)
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
移動先: 案内検索
ファイル:Armidale mornings 27May2011.jpg
粒子状物質を含んだ煙が街に広がり、大気汚染を引き起こしている。2011年5月、オーストラリア。
ファイル:Air-pollution-taiwan.JPG
粒子状物質を含んだ濃い煙霧スモッグ)、2010年4月、台湾。東アジアでは黄砂や人為的活動由来の煙霧の国境を超えた汚染(越境汚染)が深刻化・問題化している。

粒子状物質(りゅうしじょうぶっしつ、テンプレート:Lang-en-shortparticulates)とは、マイクロメートル (μm) の大きさの固体液体の微粒子のことをいう。主に、燃焼で生じた、風で舞い上がった土壌粒子(黄砂など)、工場建設現場で生じる粉塵のほか、燃焼による排出ガス石油からの揮発成分が大気中で変質してできる粒子などからなる。粒子状物質という呼び方は、これらを大気汚染物質として扱うときに用いる。

粒子状物質は主に人の呼吸器系に沈着して健康に影響を及ぼす。粒子の大きさにより体内での挙動や健康影響は異なる。その影響度を推し量る測定基準として、大きさにより分類したPM10PM2.5(日本では微小粒子状物質とも言う)、日本では浮遊粒子状物質などの指標が考案された。疫学的には、粒子状物質の濃度が高いほど呼吸器疾患心疾患による死亡率が高くなるという有力な報告がある[1][2][3]。また、PM10や浮遊粒子状物質よりもPM2.5のほうが健康影響との相関性が高い[4]。これらに基づきアメリカ欧州連合 (EU)、次いで世界保健機関 (WHO)、これに続けて世界各国が、PM10やPM2.5濃度の基準値を定めている[3][5]

先進国の一部地域ではWHO指針値に近いレベルまで削減させる事に成功している一方、途上国では家庭でのの使用に加えて都市部で自動車の使用が増大して汚染が深刻化する傾向にあり、1990-1995年の時点で途上国の年平均濃度は先進国の3.5倍である[6]。WHOは、PM10の濃度を70μg/m³から30μg/m³に減らすことができれば、世界の大気汚染に関連する死亡者年間330万人を15%減らせるだろうとしている[7]

類義語と指標

ファイル:Particulate matter classification ja.png
PM10, SPM, PM2.5の分級(捕集効率)特性。SPMはPM6.5 - 7.0に相当する[8]
ファイル:Modis aerosol optical depth.png
衛星レーダー観測による世界のエアロゾルの光学的厚さ。粒子状物質の分布に近いが、μmより大きな粒子や小さな粒子も含む。Terra衛星、2007-2011年。

粒子状物質は、一般的には大気汚染の原因となる微粒子全般をいう[9]

日本の法令における定義を述べる。日本の法令に「粒子状物質」自体の定義は存在しないが、環境基本法に基づく環境省告示(「大気の汚染に係る環境基準について」)では、浮遊粒子状物質の定義の中で「浮遊粒子状物質とは、大気中に浮遊する粒子状物質であって、(略)」として間接的に引用されている。なお、大気汚染防止法では法規制の対象である大気汚染物質として「自動車排ガスの中の粒子状物質」を指定しており、同法関連法規では粒子状物質が「自動車排ガスの中の粒子状物質」に限定して用いられるので注意を要する[9][10]

粒子状物質の分類として、その大きさにより定義されたPM10、PM2.5などがある。普通、粒子径(空気動力学径、以下同)○○μm以下の微粒子などと説明されるが、一定の粒子径以下の微粒子を完全に捕集することは困難であるという測定技術の都合から、厳密には質量中央径 MMD[注 1] または粒子数中央径 CMD[注 2] が○○μm以下の微粒子をいう。例えばPM10は、粒子径10μmで50%の捕集効率(ろ過効率)を持つフィルターを通して採集された、粒子径の異なる微粒子のまとまりのことであり、サンプル空気の中の10μmの微粒子の半分、10μm以上の微粒子の半分以下、10μm以下の微粒子の半分以上が含まれている[11]。環境基準値として用いられる濃度(単位:マイクログラム毎立方メートル μg/m³)は、こうして採集された粒子径の異なる微粒子のまとまりを計量した値である。

環境基準が設定され始めた当初は黒煙[注 3]や総浮遊粒子状物質 (TSP[注 4]) などの基準値が採用されていた。例えば、アメリカで1971年に設定された最初の環境基準ではTSPの基準値のみが設定されていた[12]。しかし、TSPはほとんど人が吸入しない数十μmの大きな微粒子が含まれていたため、人が吸入するようなより小さな微粒子へと焦点を移し、PM10やPM2.5が新たな基準として採用されている[13][14]。この点で日本では、1972年に設定された最初の環境基準がSPM(≒PM6.5 - 7.0)であり、当初から小さな微粒子を採用していたものの、PM2.5に関しては環境基準の設定が遅く、世界で採用され始めた1997年から12年経った2009年にようやく設定されている[15]

PM10

大気中に浮遊する微粒子のうち、粒子径が概ね10μm以下のもの。粒子径10μmで50%の捕集効率を持つ分粒装置を透過する微粒子。1987年にアメリカで初めて環境基準が設定され、以降世界の多くの地域で採用されて、大気汚染の指標として広く用いられている[16][17][18]。日本では、PM10は環境基準に採用されておらず、代わりに浮遊粒子状物質が採用されている。

浮遊粒子状物質

浮遊粒子状物質 (SPM[注 5])。大気中に浮遊する微粒子のうち、粒子径が10μm以下のもの。日本の環境基本法に基づく環境省告示の環境基準において「大気中に浮遊する粒子状物質であって、その粒径が10マイクロメートル以下のもの」[15]と定義されているが、PM10とは異なる。粒子径10μmで100%の捕集効率を持つ分粒装置を透過する微粒子。PM6.5 - 7.0に相当し、PM10よりも少し小さな微粒子である。大気汚染の指標として日本のみで用いられる。1972年に初めて環境基準が設定されている[17][8][18]

PM2.5(微小粒子状物質)

ファイル:483897main Global-PM2.5-map.JPG
世界のPM2.5濃度の分布、2001-2006年、NASA。

大気中に浮遊する微粒子のうち、粒子径が概ね2.5μm以下のもの。粒子径2.5μmで50%の捕集効率を持つ分粒装置を透過する微粒子。日本では訳語として「微小粒子状物質」の語が充てられるが、日本以外では相当する熟語はなく専らPM2.5と呼ぶ。PM10と比べて小さなものが多いため、健康への悪影響が大きいと考えられている[9][17][19]。アメリカで1997年に初めて環境基準が設定されて以降、1990年代後半から採用され始め、世界の多くの地域でPM10とともに大気汚染の指標とされている[1][18]

超微小粒子

テンプレート:ルビ」、日本では訳語として「超微小粒子」などと呼ばれる。PM0.1など。PM2.5よりもさらに一桁以上小さい、粒子径が概ね0.1μm以下(ナノメートルの大きさ)の微粒子を指す。PM2.5と比べて健康影響が大きいとされるが、研究途上にある[20][21][2]

その他

ファイル:SMOKE FROM THE NEIGHBORING STEEL PLANT SETTLES ON EVERYTHING. THE MIXTURE OF RAIN, WATER AND THE FERROUS OXIDE IN THE... - NARA - 545469.jpg
煤煙で汚れた自動車のボディー、1972年アメリカ。粒子径が大きなものは滞空時間が短く、比較的速く降下して堆積する。
ディーゼル排気微粒子(DEP[注 6] または DPM[注 7]
ディーゼル車の排気ガスに含まれる微粒子。PM2.5の大部分を占めているという研究もある[2]
吸入性粒子、吸入性粉塵 (RSP[注 8])
の奥に達して沈着する可能性のある微粒子。健康への影響の観点から定義したもの。5μm以下の微粒子が主であるが、それより大きなものも重量や形状、(個人によって異なる)呼吸の速さによっては肺に到達しうる。例として、ISO 7708に定められている「吸入性粉塵」は「相対沈降径(空気動力学径)4μmで50%の捕集効率を持つ分粒装置を透過する粉塵」であり、日本の労働安全衛生法下の「作業環境測定基準」にも採用されている[22][23]
降下煤塵
大気中の微粒子のうち、粒子径が大きいため浮遊できずに降下・落下するもの。大気中を徐々に落下するものと、などの降水に混じって落下するものとがある[24]
大気エアロゾル粒子(浮遊粉塵)
大気中を浮遊する微粒子。気象学用語。

粒子状物質の大きさによる性質の違いを考えるときは2μmを境にして、それより大きなものを「粗大粒子」、小さなものを「微小粒子」という。比較的大きな重力を受ける粗大粒子は落下が相対的に速いが、微小粒子は重力の影響が小さく拡散も遅いため、雲核になって雲粒に取り込まれたり(レインアウト)降水に取り込まれたり(ウォッシュアウト)しないと、比較的長期の汚染や高濃度汚染を起こしやすい。ただし、「エイトケン粒子」と呼ばれる0.1μm - 0.01μmのレベルになると、速やかに凝集して粒子径の大きな微粒子に変化する傾向があり、寿命はむしろ短くなる[25]

マイクロメートルよりも大きな粒子はほとんどが浮遊せず、降下する。統一された用語ではないが、この大きさの粒子は「降下物」などと呼ぶことが多い。粉塵と呼ばれるものにはこの大きさのものも含まれる。

様々な粒子状物質

ファイル:U.S. STEEL CHIMNEYS EMIT SMOKE 24 HOURS A DAY - NARA - 545441.jpg
製鉄所からの黒い煤煙、1972年アメリカ。煤煙には一次粒子が多く含まれ、二次粒子のもととなる気体も含まれている。

発生源や組成から、粒子状物質は以下のように様々な種類に分けられる。

一次生成粒子

微粒子として直接大気中に放出されるものを一次生成粒子という。粗大粒子が多い。普通、滞空時間は数分から数時間で、数-数十kmを移動する。水溶性、吸湿性が低いものが多い。主に以下のものがある。

[11][25]

二次生成粒子

気体として大気中に放出されたものが、大気中で微粒子として生成されるものを二次生成粒子という。微小粒子が多い。普通、滞空時間は数日から数週間で、数百-数千kmを移動する。水溶性、吸湿性、潮解性が高いものが多い。

成分では、硫酸塩 (SO42−)、硝酸塩 (NO3)、アンモニウム塩 (NH4+)、水素イオンの化合物(水素化合物)、有機化合物多環芳香族炭化水素 (PAH) など)、また (Pb)、カドミウム (Cd)、バナジウム (V)、ニッケル (Ni)、 (Cu)、亜鉛 (Zn)、マンガン (Mn)、 (Fe) などの金属、を含んだもの(吸湿粒子)などからなる。

化学反応核生成凝縮凝固を構成する水滴への溶解蒸発による析出、微粒子同士の凝集などの生成プロセスを経る。高温環境下で凝集するもの、常温下で自ら凝集するもの、水滴に溶解して凝集するものなど様々である。

発生源は、石炭や石油、木材の燃焼、原材料の熱(高温)処理、製鉄などの金属の製錬などである。イソプレンテルペンなど植物由来の揮発性有機化合物 (BVOC) もある。

[11][25]

ディーゼルエンジン排ガス起源のディーゼル排気微粒子 (DEP) は健康への害が大きいという報告があり、社会的に問題視されている[9]

鉱物由来のものの中には、害が大きく厳しい法規制が掛けられている石綿などがある。

健康への影響

ファイル:Deaths from air pollution.png
大気汚染による死者報告数(粒子状物質以外の大気汚染による死者を含む。WHO、2004年)

毒性学的報告

人間が呼吸を通して微粒子を吸い込んだ時、気管など呼吸器に沈着することで健康への影響を引き起こす[20]。粒子径が小さいほど、肺の奥まで達する(沈着する)可能性が高いが、沈着部位は粒子径に従い複雑な変化をする。粒子径以外に粒子の形状や個人の呼吸の速度などにもよるが、概ね5μm以下になると肺胞にまで達し始める[23]。ただし、1μmでも肺胞まで達するのは吸入量の1 - 2割のみで、残りは呼吸により再び排出される[26][23]。20nm (0.02μm) 付近が肺胞への沈着が最も多く、50%程度とされる。これ以下になると、むしろ肺胞よりも上気道への沈着の方が多くなるとされる[21]

鼻呼吸よりも呼吸のほうがより呼吸器の奥に沈着する傾向がある。なお、鼻・気道・肺胞などの形状は個人で異なるため個人でも差異がある。また、運動などにより換気量や呼吸数が増えると主に1 - 3μmの粒子を中心に沈着量が増える[27]

アメリカ環境保護庁は沈着率は年齢に関係ないという結果もあれば小児の方が成人よりもわずかに高かったという結果もあったと1996年に報告している。肺の表面積当たりの沈着量は小児の方が多い[28]ほか、鼻腔への沈着率は小児の方が低い[29]ことなども報告されている。これらをまとめた(環境省、2008年)は、小児は呼吸数や単位体重あたり換気量が大きいため肺の表面積当たりの沈着量は大きい傾向があり、「吸入粒子に対するリスクが大きい可能性がある」としている[30]

一方、呼吸器疾患、特に慢性気管支炎肺気腫を含めた慢性閉塞性肺疾患の患者においては、健康な人よりも沈着量・沈着速度ともに大きく特に気道の病変に応じて大きくなるほか、沈着量よりも沈着速度の方が大きく増加するという研究結果がある[31][32]。環境省は2008年にこれらをまとめ、「COPDでは気道閉塞により全肺、特に気管支での沈着が増加する」としている。また粒子状物質への暴露は人の気道や肺に炎症反応を誘導するほか、粒子状物質が気道において抗原反応性を高めるアジュバントとして働き喘息アレルギー性鼻炎を悪化させる作用や呼吸器感染への感受性を亢進させる作用が実験動物で認められ、人に関しては少なくともディーゼル排気ガス (DE) やディーゼル排気微粒子 (DEP) では喘息やアレルギー性鼻炎を悪化させる可能性があると結論付けている。また循環器への影響を示す報告もあるとし、実験動物では不整脈等の心機能の変化を示す報告があり、原因としては血管系の形態変化を促進する作用、凝固・線溶系に作用して血栓形成を誘導する作用が考えられているとしている。自律神経についても、実験動物と人とで差異はあるものの影響を及ぼすことが示唆されると結論付けている[33]

年齢や疾患の影響について環境省は2008年に、高齢者や小児について成人よりも影響が大きいという報告は存在するものの少数であるとしている。また既往疾患を有する者については影響があることが広く認められており、レビューが進められている段階ではあるが易感染宿主アレルギー性の喘息、肺高血圧虚血性心疾患の患者では粒子状物質に対する感受性が高まるという報告がある[34]

なお、粒子状物質と同時にオゾン二酸化硫黄などの生体への刺激性のある大気汚染物質がある状態、いわゆる共存暴露による影響も報告されている。オゾンや二酸化硫黄の急性暴露により気管支に収縮が生じるが、シュレズィンガー[35]は1995年に粒子状物質とこれらの共存暴露により下気道への粒子の沈着が促進される可能性を指摘している[36]

ただし、これらの沈着した粒子は鼻汁、気道線毛運動、テンプレート:仮リンク(肺胞のマクロファージ)による貪食・輸送などのクリアランス機能により次第に除去されていく。なお、吸湿性の粒子は溶解していく一方、非吸湿性(不溶性)の粒子は溶解せず粒子のまま移動する。動物における報告が多いが、人における放射性同位体をマーカーとした実験(Baileyら、1982年)によると、1.2μmの粒子で約8%、3.9μmの粒子で約40%が6日以内に除去され、長期的にはおよそ600日で半減するペースで肺から除去されている。一方、不溶性が高い粒子は長期にわたって肺に残留するものがあり、クレイリング[37]とショイヒ[38]は2000年にモデル予測からこうした粒子の約3分の1が体内から除去されないと報告している。不溶性が高い粒子は主に黒色炭素の微粒子であることが知られている[39]

また、PM0.1のような超微小粒子のレベルになると肺以外への影響も懸念されるような血液への移行があるという報告もあるが、否定する報告もあり、研究途上である[21][40]

変異原性発癌性に関して(環境省、2008年)は、都市の大気中の微小粒子については微生物・培養細胞・動物実験から変異原性を有することは支持されるが、発がん性については動物実験での長期暴露の報告が少ないことから現段階では「実験的根拠が不足している」としている。ただし、特にディーゼル排気微粒子 (DEP) に関しては、ラットへの高濃度暴露に限り肺腫瘍への寄与が認められ、DEPそのものや含有物質の多環芳香族炭化水素 (PAH) の遺伝子障害機構が判明していることから人への発癌性は「示唆されている」としている。また、都市の大気中の微小粒子にはDEPが含まれることから都市の大気中の微小粒子についても発がん性に「関与することが示唆される」としているが、濃度や組成が場所により大きく異なることから発がん影響の判定は困難であると結論付けている[41]

疫学的報告

疫学的には、呼吸器罹患率や死亡率の増加、肺機能の低下、重い症状としては肺の毛細血管への刺激や呼吸困難肺気腫などが知られている。また一般的に3μm以下のものは健康への影響を及ぼすとの報告がある[20]。ラットにおける実験では、ディーゼル排気微粒子が免疫機能へ影響を及ぼしアレルギーを増悪させるという報告がある。黄砂においてもアレルギーを悪化させるという実験報告があるほか、中国、台湾、韓国では黄砂の飛来時に呼吸器疾患や心疾患、アレルギーが増加したとの論文報告が複数ある[42]

最も古い疫学的研究としてアメリカにおける二酸化硫黄と粒子状物質の健康影響に関する研究(1974年)等がある。1980年には「一般の大気環境の濃度範囲の粒子状物質や二酸化硫黄が健康な人に死亡を引き起こすような証拠はない」と結論付ける論文が発表されて議論となった事があるが、すでにこの時期には汚染の濃度が低下しつつあり急速な健康影響が生じなくなっていた(長期的な暴露による影響に主題が移っていった)のではないかという考察がある。その後1980年代後半から研究報告が増え、ポープ[43]とシュバルツ[44]らをはじめとして都市部で日常的に観測される濃度での死亡率との関連性を肯定する報告、長期的な暴露に関する報告が複数発表された[1]

ドッケリー[45]の1993年の報告やポープの1995年の報告をまとめた新田の2009年の報告によれば、「ハーバード6都市研究」と呼ばれるコホート研究の結果、PM2.5の濃度と、全死亡および心疾患肺疾患による死亡の相対リスクとの間で、有意な関連性が認められている。また、ポープらの1995年、2002年の報告と、クルースキ[46]らの2000年の報告をまとめた新田の2009年の報告によれば、アメリカがん学会の研究を利用しアメリカの50都市30万人を対象に1989年までの7年間(追跡調査では1998年まで)行われた解析調査で、PM2.5の濃度と、全死亡および心疾患・肺疾患・肺癌による死亡との間で、有意な関連性が認められている。アメリカではこれらの研究が明らかになったことを契機にPM2.5の環境基準が設定されるに至った。日本でもSPM濃度と肺癌による死亡との関連性を示唆する研究報告がある[1][2]

各種研究をまとめたWHOの2005年の報告によれば、PM10が10μg/m³増加した時の1日当たり死亡率は、呼吸器疾患によるものが1.3%(95%CI値 0.5-2.0%)、心血管疾患によるものが0.9%(同 0.5-1.3%)、全死因で0.6%(同 0.4-1.8%)、それぞれ上昇する。またアメリカがん学会の調査を利用したPopeらの研究 ("ACS CPS II", 1979–1983) によれば同じくPM10が10μg/m³増加した時の長期的な死亡率は、心肺疾患で6%(95%CI値 2-10%)、全死因で4%(同 1-8%)、それぞれ上昇する[3]

定量的な推計報告の主な例として、1990年において大気浄化法による規制がなかった場合と比較して年間184,000人が助かったとの推計(アメリカ環境保護庁、1997年)、PM10への短期暴露により8,100人が死亡しているとの推計[47]、ディーゼル排気による発癌を被る人は年間5,000人余りとする推計[48]などがある[2]

健康影響への対策

各国や地域では、他の大気汚染物質と並んでPM10、PM2.5、SPM(日本)などの、環境中の濃度の観測値や予測値を発表している。

環境中の濃度は屋外の大気を代表したいくつかの観測地点における値である。一方、人に健康影響を与える粒子状物質は、屋外だけではなく屋内も含めた様々な場所の空気に含まれ、それぞれの場所での暴露の量は地域・社会・個人により異なる。ただ、道路沿いなど発生源の近くを除けば、概ね屋外と屋内の濃度は同じか、屋内の方が少し低いという研究結果が得られている。また多くの研究において、屋外よりも屋内、PM10よりもPM2.5のほうが、それぞれ個人の暴露影響との相関性が大きいとされている。こうしたことから1990年代後半からPM2.5の環境基準が導入され監視が行われている。また、10μmより大きな粒子はほとんどが鼻や喉咽頭などの上気道で捕捉され大気中でも比較的速く落下する一方、10μmより小さな粒子は下気道や肺胞での沈着が多く大気中でも落下が遅く長く滞留する事などから、PM10(日本に限ってはSPM)の環境基準も引き続き運用され監視が行われている[4]

高濃度汚染への対策の一例としては、汚染への暴露をできる限り低減することが基本とされ、具体的には手洗いうがい、屋内ではを閉めて隙間を塞ぐ措置、屋外ではマスクの着用などが挙げられる。汚染の激しい日は外出を避ける、寝室などの長時間滞在する部屋に空気清浄機を設置するなどの対応もある。また子供は汚染に対するリスクが高いことから、幼稚園学校などでは汚染の激しいときに屋外活動を制限する対応が取られる場合もある(北京の例)[49]

マスクに関しては、PM2.5に限ると、通常のマスクは製品ごとに性能に差異がある。高性能の防塵マスク(N95DS1以上など[50])はフィルター自体は高性能のため粒子の吸入を低減する効果があるものの、適切な着用方法でなければ期待されるような効果が得られないとされる。個々人の顔の大きさにあったものを選ぶ、空気が漏れないようにするなどの検討が必要となる。また、息苦しさを感じやすいので長時間の使用には適さない[51]

空気清浄機に関しても、メーカーや製品により性能に差異があり、環境省の専門家会合報告書は製品表示を確認したり販売店やメーカーに確認したりするよう勧めている[51]

建造物や気象などへの影響

自然環境や人間以外に与える影響としては、含有物質にもよるが金属腐食、塗装面の劣化、彫刻などの芸術作品や人工構造物の劣化などの物理的被害、降雨へ取りまれて酸性雨の発生に寄与する間接的影響が挙げられる。また、煙霧の原因物質として視程を悪化させる作用[25]凝結核として働きを生成する作用、の表面に堆積し太陽光を吸収する作用、大気中のエアロゾル粒子として働き太陽光を吸収する作用(日傘効果地球薄暮化)による気候への影響も考えられている[20]

測定

SPM、PM10、PM2.5の測定法は主に、大気を吸引してフィルタ上に粒子を集め電子天秤でその重量を測定する「フィルタ法」と、同様に集めた粒子にベータ線を照射してその透過率から重量を測定する「ベータ線吸収法」、フィルタ経由でカートリッジに集めた粒子を振動により重量測定する「フィルタ振動法」(TEOM[注 9]) がある。日本ではSPMの環境基準が設定された1973年以来、ロウボリウムエアサンプラ[注 10]と呼ばれる測定器を用いて「フィルタ法」で測定が行われている[17]

各国の動向

ファイル:PM10 in Europe.png
EU各国のPM10、24時間値の年平均値の90パーセンタイル値(2005年、欧州環境機関

各国の環境基準と規制の動向について解説する。

WHO

世界保健機関 (WHO) は、公衆衛生の進展度が異なる各国が環境基準を定める際のガイドラインとして、粒子状物質を含む「大気質指針」[注 11]と暫定目標を定めている。1987年にWHO欧州地域事務局がヨーロッパのガイドラインを定めて以降、健康影響に関する評価を進めて世界全体を対象としたガイドラインに拡張し、2006年10月 - 2007年3月にかけて公表した。以下のような構成となっており、最終的には「大気質指針」が理想であるが、各国の状況も尊重され、これと異なる独自の基準を設定することを妨げるものではないと表明している。なお、下表の24時間平均は、99パーセンタイル値(この値を超えない日は年間365日のうち99%、超える日は1%=3日間まで)[3][5]

WHO大気質指針
PM10 24時間平均 50μg/m³
年平均 20μg/m³
PM2.5 24時間平均 25μg/m³
年平均 10μg/m³
WHO大気質指針 暫定目標
暫定目標1 暫定目標2 暫定目標3
PM10 24時間平均 150μg/m³
年平均 70μg/m³
24時間平均 100μg/m³
年平均 50μg/m³
24時間平均 75μg/m³
年平均 30μg/m³
PM2.5 24時間平均 75μg/m³
年平均 35μg/m³
24時間平均 50μg/m³
年平均 25μg/m³
24時間平均 37.5μg/m³
年平均 15μg/m³

アメリカ

大気浄化法により1971年に初めて環境基準が設定された。当初は全浮遊粒子状物質 (TSP[注 12]) の値を定めていたが、1987年の改訂でPM10に変更、1997年の改定でPM2.5の値が追加されている。現在の基準は以下の通り[5]

PM10 24時間平均 150μg/m³テンプレート:Smaller
PM2.5 24時間平均 35μg/m³テンプレート:Smaller
年平均 15μg/m³テンプレート:Smaller

また、PM10やPM2.5の濃度に応じた6段階の空気質指数 (AQI[注 13]) が設定されていて、主要都市では当日から翌日の予報も行われて、指数とその区分に対応する健康影響や注意事項が併せてメディアで伝えられる[52]テンプレート:See also

EU

ヨーロッパでは各国が独自に基準を定めている。EU広域では、1980年に当時のECが浮遊粒子 (SP[注 14]) の環境基準の値を定め、1990年にPM10の値を設定している。現在、「DirectiveEU指令) 2008/50/EC」では、以下のような基準を定めている[53][54]

PM10 24時間平均 50μg/m³テンプレート:Smaller
年平均 40μg/m³
PM2.5 年平均 25μg/m³

日本

ファイル:Particle concentration Tokyo Osaka and Japanese national average.png
東京、大阪、全国平均におけるPM(浮遊粉じん)とSPM(浮遊粒子状物質)濃度の推移、1964-2011年、環境省ほかによる

テンプレート:See also 日本では1967年(昭和42年)制定の公害対策基本法において環境基準を設定すべきと定め、1972年(昭和47年)に浮遊粒子状物質 (SPM) の基準を初めて設定した(昭和47年1月環境庁告示第1号「浮遊粒子状物質に係る環境基準について」)。翌年、他の大気汚染物質を含む告示に拡張(昭和48年環境庁告示第25号「大気の汚染に係る環境基準について」)、その後も何度か改正され準拠法も環境基本法へと変わった。一方、欧米では1990年代にPM2.5の基準が設定されたが、日本ではその検討が遅れていた。2007年に和解が成立した東京大気汚染訴訟においてPM2.5への対策が言及されたことを受け、中央環境審議会において検討が進められ、2009年に基準が初めて設定された。現行では環境省告示として、浮遊粒子状物質と微小粒子状物質 (PM2.5) の基準を定めている[55]

日本の環境基準
SPM 1時間値の1日平均値0.10mg/m³(100μg/m³相当)以下、かつ1時間値が0.20mg/m³(200μg/m³相当)以下であること(1973年5月8日告示・現行1996年改正版「大気の汚染に係る環境基準について」[15])。
PM2.5 1年平均値が15μg/m³以下、かつ1日平均値が35μg/m³以下であること(2009年9月9日告示・現行「微小粒子状物質による大気の汚染に係る環境基準について」[56])。

基準を上回る状態が継続すると予想されるときは、大気汚染注意報を発表して排出規制や市民への呼びかけを行うことが大気汚染防止法で規定されている。また、自動車NOx・PM法でも三大都市圏の中心地域において一部の自動車に排ガス規制措置が執られている(自動車排出ガス規制)。

大気汚染防止法に基づく大気汚染注意報(「大気汚染防止法施行令」第11条、別表第5)[57]
SPM 注意報 1時間値2.0mg/m³(2,000μg/m³相当)以上が2時間継続した場合。
重大警報・重大緊急時警報テンプレート:Smaller 1時間値3.0mg/m³(3,000μg/m³相当)以上が3時間継続した場合。

テンプレート:要出典。2003年10月1日から、東京都埼玉県神奈川県千葉県ディーゼル車規制条例により排出ガス基準を満たさないディーゼル車の走行規制が始まった[58]。この規制強化により、自動車NOx・PM法対象地域では2002年から2004年にかけてSPMの環境基準達成率が大きく上昇、2008年 - 2010年の3年間は99%以上となっているが、年により環境基準が達成できない地点もある[59]

平成20年度(2008年)の環境省発表による国内全測定局のSPM濃度の年平均では、自動車排出ガス測定局(自排局)で昭和49年(1974年)に0.16mg/m³を超えていたものが翌年に0.09mg/m³以下に漸減、以後緩やかに減少し平成13年(2001年) - 平成20年(2008年)まで0.04mg/m³以下を維持している。また一般環境大気測定局(一般局)で0.06mg/m³近くだったものが緩やかに減少し昭和56年(1981年)以降は0.04mg/m³以下、平成13年(2001年)頃 - 平成20年(2008年)まで0.03mg/m³以下を維持している。また同発表における平成20年度(2008年)の環境基準達成率は自排局99.3%、一般局99.6%だった[60]

2013年の1月から2月にかけて中国北京などで発生した大規模な大気汚染は記録的なPM2.5の値とともに日本でも報じられると同時に、越境汚染によるとみられる高い測定値が実際に観測された。中国の汚染と同時期に、九州北部のいくつかの地点で環境基準(日平均値)の3倍程度の1時間値を観測する[61]など、西日本で一時的に高濃度のPM2.5が観測された。市民の関心が高まったことにより、少なくとも2月8日時点で環境省・国立環境研究所が運営する大気汚染広域監視システム「そらまめ君」のWebサイトがアクセス困難になる事態となり[62]、環境省は2月12日にPM2.5の特設ページ「微小粒子状物質(PM2.5)に関する情報」を設置した[63]。2月には自治体独自の情報提供を検討・開始するところも出た[64][65]

環境省は同年2月に専門家会合を開催してPM2.5の注意喚起に関する暫定的な指針を決定し、今後も知見が得られれば適宜見直しを行うとした。越境汚染に対しては国内法に基づく強制力のある措置(排出企業への命令や交通制限など)の効果が期待できず、また汚染源の解明が不十分である事などを理由として、法令により都道府県に注意報等の発表と排出削減措置が義務付けられているSPMとは異なり、あくまで暫定的な指針とされた。なお、2013年1月の日本国内平均値は2011・2012年と比較してとりわけ高いわけではなかったが、会合では西日本で見られた一時的な濃度上昇に関して大陸からの越境大気汚染の影響があったとしている[51]

環境省による「注意喚起のための暫定的な指針」[66]
暫定指針値 行動の目安
テンプレート:Nowrap レベルI 日平均値70μg/m³以下(1日のなるべく早い時間帯のうちに左記の値に達する事を判断するための値として、1時間値85μg/m³以下)[注 15] 特に行動を制約する必要はないが、高感受性者(呼吸器疾患や循環器疾患を持つ人、小児、高齢者など)は健康への影響がみられる可能性があるため、体調の変化に注意する。
テンプレート:Nowrap 日平均値70μg/m³超過(1日のなるべく早い時間帯のうちに左記の値に達する事を判断するための値として、1時間値85μg/m³超過)。 不要不急の外出や屋外での長時間の激しい運動をできるだけ減らす。高感受性者は、体調に応じて、それ以外の人より慎重に行動することが望まれる。
PM2.5 自治体独自の指針
福岡市PM2.5予測情報[67] 条件 行動の目安
日平均値35μg/m³超過が予測されるとき(福岡市内8測定局の午前6時の1時間値の平均値が39μg/m³を超過した時)。 健康影響の対策として、外出するときのマスク等の着用、帰宅時の洗眼やうがいを奨励。また生活影響への対策として、洗濯物等はできるだけ外に干さない、空気の入れ替えを控える、車の運転時は窓を閉める、洗車を後日に延期することを、それぞれ奨励。

中華人民共和国

中華人民共和国では、1982年に初めて全浮遊粒子状物質(TSP、100μm以下)と浮遊粒子(PM10に相当)の環境基準を設定[68][69]、2度改正され2012年改正(2016年施行予定)の国家標準GB 3095-2012「环境空气质量标准」(環境空気質基準)ではPM2.5の基準も追加された[70][71][68]。2009年同国政府発表の「中国環境状況公報」では全都市中でPM10の二級基準を達成した都市が84.3%であった[68]

GB 3095-1996(主要都市を除き現行)[68][71]
一級 二級 三級
TSP 24時間平均 0.12mg/m³ (120μg/m³)
年平均 0.08mg/m³ (80μg/m³)
24時間平均 0.3mg/m³ (300μg/m³)
年平均 0.2mg/m³ (200μg/m³)
24時間平均 0.5mg/m³ (500μg/m³)
年平均 0.3mg/m³ (300μg/m³)
PM10 24時間平均 0.05mg/m³ (50μg/m³)
年平均 0.04mg/m³ (40μg/m³)
24時間平均 0.15mg/m³ (150μg/m³)
年平均 0.1mg/m³ (100μg/m³)
24時間平均 0.25mg/m³ (250μg/m³)
年平均 0.15mg/m³ (150μg/m³)
一級は都市部、二級は半農半牧畜の地域、三級は農業や林業の地域。
GB 3095-2012(主要76都市のみ適用[72]、2016年1月1日全域で施行予定)[70]
一級 二級
TSP 24時間平均 120μg/m³
年平均 80μg/m³
24時間平均 300μg/m³
年平均 200μg/m³
PM10 24時間平均 50μg/m³
年平均 40μg/m³
24時間平均 150μg/m³
年平均 70μg/m³
PM2.5 24時間平均 35μg/m³
年平均 15μg/m³
24時間平均 50μg/m³
年平均 35μg/m³
PM10とPM2.5は国内全域対象、TSPは地方政府が実情に応じて個別に導入すると規定されている。
なお、北京・上海など76の主要都市では2012年末から前倒しで適用されている[72]

中国の粒子状物質濃度は経済発展などにより、資料が確認できる1990年頃にはすでに深刻なレベルに達していた。例えば、上海における1990年のPM10の年平均濃度は350μg/m³を超えており、WHO暫定目標で最も緩い暫定目標1の5倍以上であった。この値は年々減少し、2001年-2008年の間は年平均100μg/m³前後の水準にあるが、依然として暫定目標1よりも高い[73]。また、北京におけるPM10年平均濃度も2000年-2011年の12年間に減少傾向にあるものの、100μg/m³強の水準にあってこちらも依然として暫定目標1より高い[74]。このように中国の粒子状物質濃度は数十年来高い水準にあるが、中国では粒子状物質以外の大気汚染物質、急性の健康被害を起こす二酸化硫黄やオゾンの発生源となる二酸化窒素などの方がどちらかと言えば影響度が大きい[73]

このような中、粒子状物質による大気汚染の深刻さを浮き彫りにしたのが、2011年11月に北京アメリカ大使館が始めた独自観測値の公表である。同大使館は独自にPM2.5や空気質指数(AQI)の監視を行い、Twitter[75]で公表を開始した。翌2012年5月には上海アメリカ総領事館も同様の公表を開始した。これにより、中国の行政当局が発表している値と大使館の値が比較されてインターネット上で騒ぎとなり、当局が公表を差し止めるよう要求する事態となった[76][77]。なお、その後当局は方針を変えて測定・発表を始めている。

そもそも、中国では北京などがある華北を中心として暖房用燃料の使用が増える季に大気汚染が悪化する傾向があり、2011年12月や2013年1月に激しい汚染が発生して高濃度の粒子状物質が観測されている[78]。はじめ当局は数値を公表せず、汚染について国営メディアは「濃い霧」などと報じていた[79]

2013年1月の汚染は「1961年以来最悪」(北京日本大使館)、「歴史上まれにしか見られないほど」(中国気象局)とされるレベルで、風が弱かったため10日頃から始まった激しい汚染はおよそ3週間も継続し、呼吸器疾患患者が増加したほか、工場の操業停止や道路・空港の閉鎖などの影響が生じた。12日には北京市内の多くの地点で環境基準(日平均値75μg/m³)の10倍に近い700μg/m³を超え、月間でも環境基準(同)を達成したのは4日間だけとなり、北京日本大使館によれば143万km2・8億人、中国環境保護部によれば中国国土の4分の1・6億人に影響が及んだ[80][78]。北京ではPM10も、2012年の年平均値が109μg/m³で環境基準(年平均値70μg/m³)を超過している[74]。この汚染の様子は他国にも報じられ、韓国や日本への越境汚染が懸念される事態となった[80]。例えば日本では報道により国民の関心が高まり、2013年2月になって既存の環境基準に加えて環境省が「注意喚起のための暫定的な指針」を設ける事態となった。

中国共産主義青年団の機関紙『中国青年報』の世論調査(2013年1月、31省市約3,000人対象)では、中国国内で大気汚染によって生活に影響が出ていると答えた人は9割を超え、約4割が外出時にマスクをつけるなどの対策をとっているという[81]北京大学の研究(2012年)によると北京・上海・広州・西安の4都市でPM2.5に起因する死者は年間約8,000人で、世界銀行中国環境保護部(2007年)によるとPM10を中心とする大気汚染による死者は中国全土で年間約35~40万人(2010年には123万人の中国人がPM 2.5などの大気汚染が原因で健康損ない亡くなったとも発表されている[82]。)と推計されている[83]。経済誌『テンプレート:仮リンク』に掲載された上海復旦大学教授の分析でも2006年の1年間で大気汚染に起因する死者は113都市で30万人、経済損失は3,414億元(約5兆1,000億円)とされている[84]

PM10やPM2.5の濃度上昇の原因は、石炭の燃焼による排気成分や、自動車排気、煤煙などと分析されている。特に、石炭は中国では依然として発電用燃料の主力であり、家庭でも暖房用燃料に広く用いる。自動車も保有台数が年々増えており、北京市の例をとっても2012年末時点の保有台数500万台という数は2008年から僅か4年間での倍増である。これに、ガソリン中の硫黄分の規制値が日欧の15倍という緩さが拍車を掛けているという見方がある[77]。旧暦で新年を迎える際(春節1月前半~2月前半)の慣習で一斉に用いられる爆竹の煙も汚染源となっており、例えば北京ではPM2.5が2012年1月23日午前1時に前日の80倍の1,593μg/m³に急上昇した後、朝には約40μg/m³まで低下している[85]

この状況について、大気汚染対策が全国人民代表大会の主要な議題になるなど当局の問題意識は高まっているが、市民は対策が不十分と感じている事が報じられている。北京市の対策例を挙げると、自動車排気ガス基準の厳格化、石炭ボイラーの改造やガス化(石炭からガスへの転換を「煤改気」という)、電化(石炭から電気への転換を「煤改電」という)、植林などが掲げられている[77]

インド

インドの大気汚染も他の途上国と同様に深刻で、粒子状物質の濃度も高い水準にある。首都ニューデリーにおける2010年のPM10の年平均濃度は259μg/m³、デリー首都圏数か所における2011年のPM2.5の年平均濃度はいずれも100μg/m³以上と、中国と同程度あるいはより深刻な水準にあると考えられている[86][87]

インドにおいても、汚染の原因は石炭などの燃料の燃焼、自動車排気ガスが大きな割合を占めるが、薪や炭、牛糞など、熱効率が悪い原始的な燃料の燃焼によるものが比較的多いという特徴がある。行政当局もモニタリングを行ったり、公共交通の圧縮天然ガス(CNG)化推進、ディーゼル車の推進、デリー・メトロの整備などの対策を行っているが、著しい人口増加もあり、デリーでは近年(2008年 - 2010年)でもPM10年平均濃度が上昇傾向にある[88]

脚注

テンプレート:脚注ヘルプ

注釈

テンプレート:Reflist

出典

テンプレート:Reflist

参考文献

関連項目

外部リンク

詳しく解説されている資料
観測
予測
テンプレート:大気汚染
  1. 1.0 1.1 1.2 1.3 新田裕史「テンプレート:PDFLink」大気環境学会、平成21年「粒子状物質の動態と健康影響」講演会要旨、2009年、2013年1月29日閲覧
  2. 2.0 2.1 2.2 2.3 2.4 岸本充生「浮遊粒子状物質による健康影響の定量評価の現状と課題」第2回環境管理研究部門・化学物質リスク管理研究センター講演会「化学物質リスク評価とリスク削減に向けた環境産業技術の開発」資料、2003年1月24日、2013年1月29日閲覧
  3. 3.0 3.1 3.2 3.3 Air quality guidelines” 2005年、275-280頁 引用エラー: 無効な <ref> タグ; name "aqg05-275"が異なる内容で複数回定義されています 引用エラー: 無効な <ref> タグ; name "aqg05-275"が異なる内容で複数回定義されています
  4. 4.0 4.1 環境省「微小粒子状物質健康影響評価検討会報告書」、2008年、§3 83-84頁、§7 7-14頁
  5. 5.0 5.1 5.2 テンプレート:PDFLink」環境省、2013年1月25日閲覧
  6. Air quality guidelines” 2005年、34-37頁、54頁
  7. Air quality and health” World Health Organization(世界保健機関)、2011年9月、2013年2月3日閲覧
  8. 8.0 8.1 「微小粒子状物質健康影響評価検討会 第7回 テンプレート:PDFLink」環境省、2013年2月6日閲覧
  9. 9.0 9.1 9.2 9.3 大気汚染の原因 【ばいじん、粉じん、浮遊粒子状物質(SPM)とは?】大気環境の情報館(環境再生保全機構)、2013年1月25日閲覧
  10. 粒子状物質(PM)大気環境・ぜん息などの情報館(環境再生保全機構)、2013年1月25日閲覧
  11. 11.0 11.1 11.2 Guidelines for Air Quality” 1999年、1-8頁
  12. Particulate Matter (PM) Standards - Table of Historical PM NAAQSUnited States Environmental Protection Agency、2013年2月13日閲覧
  13. Air quality guidelines” 2005年、11頁、32頁、217-220頁
  14. 香川順「PM2.5と健康影響」日本自動車工業会『JAMAGAZINE』2012年6月号、2013年1月29日閲覧
  15. 15.0 15.1 15.2 大気の汚染に係る環境基準について」環境省、2013年1月29日閲覧
  16. PM10eicネット(環境情報センター)、2012年5月16日更新版、2013年1月25日閲覧
  17. 17.0 17.1 17.2 17.3 テンプレート:PDFLink」環境省 微小粒子状物質 (PM2.5) 測定法評価検討会、2008年12月、2013年1月25日閲覧
  18. 18.0 18.1 18.2 air quality guidelines」2005年、218-219頁
  19. PM2.5eicネット(環境情報センター)、2009年10月14日更新版、2013年1月25日閲覧
  20. 20.0 20.1 20.2 20.3 Pollutants:Particulate matter (PM)」国連環境計画 (UNEP)、2013年1月29日閲覧
  21. 21.0 21.1 21.2 テンプレート:PDFLink」『環境儀』No.22、2006年10月、国立環境研究所、2013年1月29日閲覧
  22. 明星敏彦「テンプレート:PDFLink」『産業衛生学雑誌』47巻、239-245頁、2005年、2013年1月25日閲覧
  23. 23.0 23.1 23.2 日本産業衛生学会 許容濃度等に関する委員会「テンプレート:PDFLink」『産業衛生学雑誌』53巻、204-209頁、2011年5月18日、2013年1月25日閲覧
  24. 降下ばいじんeicネット(環境情報センター)、2009年10月14日更新版、2013年1月25日閲覧
  25. 25.0 25.1 25.2 25.3 坂本和彦「PM2.5と大気環境」日本自動車工業会『JAMAGAZINE』2012年6月号、2013年1月29日閲覧
  26. Soderholm、1989年
  27. 環境省「微小粒子状物質健康影響評価検討会報告書」、2008年、§4 8-9頁
  28. Bennett、Zeman、1998年
  29. Becqueminら、1991年
  30. 環境省「微小粒子状物質健康影響評価検討会報告書」、2008年、§4 14-15頁
  31. Bennettら、1997年
  32. Brownら、2002年
  33. 環境省「微小粒子状物質健康影響評価検討会報告書」、2008年、§4 15-16頁、§5 156-158頁
  34. 環境省「微小粒子状物質健康影響評価検討会報告書」、2008年、§5 160頁
  35. テンプレート:Lang-de-short
  36. 環境省「微小粒子状物質健康影響評価検討会報告書」、2008年、§4 16頁
  37. Kreyling
  38. Scheuch
  39. 環境省「微小粒子状物質健康影響評価検討会報告書」、2008年、§4 18-20頁
  40. 環境省「微小粒子状物質健康影響評価検討会報告書」、2008年、§4 21-22頁
  41. 環境省「微小粒子状物質健康影響評価検討会報告書」、2008年、§5 118-119頁、158-159頁
  42. 市瀬孝道「テンプレート:PDFLink」、日本気象学会『天気』58巻6号、pp511-516、2011年。
  43. Pope
  44. Schwartz
  45. Dockery
  46. Krewski
  47. イギリス保健省・大気汚染健康影響委員会、1998年
  48. 日本、岩井・内山、2001年
  49. 資料1、16-24頁、北京日本大使館、2013年2月11日閲覧
  50. テンプレート:PDFLink」環境省、2013年5月23日閲覧
  51. 51.0 51.1 51.2 テンプレート:PDFLink」環境省、2013年2月付、2013年5月23日閲覧
  52. Technical Assistance Document...」、アメリカ環境保護庁、2009年、1-6,20-24頁
  53. 欧州における新大気質に関する指令について」日本産業機械工業会 情報報告 ウイーン、2013年1月25日閲覧
  54. Air Quality Standards」欧州委員会、2012年1月12日付、2013年1月25日閲覧
  55. 大気汚染に係る環境基準」環境省、2013年1月25日閲覧
  56. 微小粒子状物質による大気の汚染に係る環境基準について」環境省、2013年1月29日閲覧
  57. 大気汚染防止法施行令」、別表第5、閲覧時点の最終改正:平成24年2月10日政令第28号、法令データ提供システム、2013年5月23日閲覧
  58. ディーゼル車規制に関するQ&A」東京都環境局、2013年2月16日閲覧
  59. 「平成22年度大気汚染状況について (PM2.5以外) (PM2.5)」環境省、2013年2月14日閲覧
  60. 大気汚染の状況(浮遊粒子状物質(SPM)の概要、年平均値の推移)大気環境の情報館(環境再生保全機構)、2013年1月29日閲覧
  61. 「PM2.5:福岡で今年最高の104マイクログラム計測」毎日新聞(東京朝刊)、2013年2月24日付、2013年2月24日閲覧
  62. 中国大気汚染物質飛来問題 環境省、緊急対策を発表
  63. 環境省 PM2.5の専用ホームページ NHKニュース
  64. 中国大気汚染は九州だけじゃない 「PM2.5」の危険性dot(朝日新聞出版)、2013年2月5日付(週刊朝日 2013年2月15日号)、2013年2月11日閲覧
  65. 中国から飛来PM2.5、福岡市が独自予報へ」読売新聞 九州発、2013年2月5日付
  66. 微小粒子状物質(PM2.5)に関する情報」環境省、2013年5月23日閲覧
  67. 福岡市PM2.5予測情報」福岡市、2013年4月26日更新版、2013年5月23日閲覧
  68. 68.0 68.1 68.2 68.3 金振「中国の大気汚染防止の法制度および関連政策(Ⅰ)SciencePortal China(科学技術振興機構)、2012年12月21日付、2013年1月29日閲覧
  69. 中国の大気環境問題」、2013年1月29日閲覧
  70. 70.0 70.1 テンプレート:PDFLink」中華人民共和国環境保護部・国家質量監督検験検疫総局、2013年1月29日閲覧
  71. 71.0 71.1 テンプレート:PDFLink」環境省、2011年3月時点[3]、2013年1月29日閲覧
  72. 72.0 72.1 資料1、23頁、北京日本大使館、2013年2月11日閲覧
  73. 73.0 73.1 傅喆「上海における大気汚染の実態と健康被害について : 疫学的研究から見えてくる課題」、『静岡大学経済研究』15巻4号、119-132頁、2011年2月
  74. 74.0 74.1 資料1、9頁、北京日本大使館、2013年2月11日閲覧
  75. BeijingAir 北京アメリカ大使館が1時間ごとに発表する大気汚染状況。中華人民共和国では金盾によるブロッキングにより、中国本土では閲覧不能。
  76. 米大使館の大気汚染数値の公表、中国当局「内政干渉」と批判」大紀元日本語版、2012年6月8日、2014年1月4日閲覧
  77. 77.0 77.1 77.2 孟健軍「コラム 第367回 PM2.5から探る中国の環境問題」、経済産業研究所、2013年4月16日、2014年1月4日閲覧
  78. 78.0 78.1 中国大気汚染なぜ社会問題化 史上最悪レベル・データ公開・市民の意識に変化」msn産経ニュース、2013年2月7日、2013年2月11日閲覧
  79. 中国の大気汚染―「濃い霧」と主張する政府に勝った米国大使館」ウォール・ストリート・ジャーナル、2011年12月6日付 (JST)、2013年2月11日閲覧
  80. 80.0 80.1 資料1、2頁、北京日本大使館、2013年2月11日閲覧
  81. 資料1、28頁、北京日本大使館、2013年2月11日閲覧
  82. Yahoo! ニュース、DAILY NOBORDER、中国 PM2.5で年間123万人が死亡!? (2013年11月2日(土)23時17分配信)2014年3月10日閲覧
  83. 資料1、15頁、北京日本大使館、2013年2月11日閲覧
  84. 「中国大気汚染:在留日本人、帰国も検討 空気の缶詰登場 1 2」毎日新聞、2013年2月9日付毎日新聞、2013年2月11日閲覧
  85. 大気汚染物質が80倍 北京市、春節花火が原因?」、2012年4月2日時点のオリジナル[リンク切れ]よりアーカイブ、msn産経ニュース、2012年1月23日、2013年2月11日閲覧
  86. 大気汚染、インドも深刻 「PM2.5など中国と同様」指摘も」、2013年4月1日付、2014年1月4日閲覧
  87. Kamala Kelkar, "Delhi’s Dangerous Air Pollution Problem", The Wall Street Journal, 2013年11月2日付、2014年1月4日閲覧
  88. テンプレート:PDFLink」、在インド日本国大使館、2013年3月21日、2014年1月4日閲覧


引用エラー: 「注」という名前のグループの <ref> タグがありますが、対応する <references group="注"/> タグが見つからない、または閉じる </ref> タグがありません