ΔΣ変調
ΔΣ変調(デルタシグマへんちょう)は、アナログ信号をデジタル符号に変換する際に、高速で標本化した量子化雑音のパワースペクトル密度(PSD)分布の形状を整形し、通過帯域のダイナミックレンジを向上させることによって、より小さな量子化語長数で符号化する回路形式全体を指す場合と、量子化雑音を整形する部分(ノイズシェーピング)を指す場合がある。1960年代初めに当時大学院生で、後に早稲田大学理工学部教授などを歴任する安田靖彦が開発した[1]。近年の半導体技術の発達や精度の必要なアナログ的な部分が少ないなどの点から音声処理用のAD変換(ADC)及びDA変換(DAC)で多用されている。日本国外を中心にΣΔ変調 (シグマデルタへんちょう)とも呼ばれているが正しくはΔΣ変調である。
概要
A/D変換の場合、目的のサンプリング周波数より充分に高い周波数でアナログ信号を標本化(オーバーサンプリング)を行い量子化雑音のPSDが広い周波数帯域に分布するようにする。例えばサンプリング周波数を倍にすると量子化雑音は元の標本化周波数時(1fs)と雑音の総パワーは同じだが倍の周波数帯域に分散する(パーセバルの定理)。現在のΔΣ式ADCはCDの64倍から128倍で高速標本化する。この量子化雑音を帰還回路によって人間の耳には聴こえない帯域に分布させることによって寄せ集める。 通常、DATなどのA/D変換器の場合、ΔΣ変調器から出力された高速低bit信号の非通過帯域に寄せ集められた量子化雑音をデジタルローパスフィルタで除去してから、標本化周波数を1/64に間引く(デシメーションフィルター)ことによって 44.1 kHz や 96 kHz 16 bit 24 bit などのS/N比が確保されたデジタル符号が得られる。
D/A変換の場合、デジタル信号を充分に高い周波数にオーバーサンプリングして再量子化雑音の分布を広い帯域に分布させ、ΔΣ変調器を用い再量子化雑音を整形する。高速低bit D/A変換を行いアナログローパスフィルタで再量子化雑音を除去するとS/N比が確保されたアナログ信号が得られる。
高い周波数で標本化すると比較器の分解能やD/A変換器のセトリングタイムが追いつかないので高速標本化ΔΣ変調器の量子化器は低いビット数で量子化せざるを得なくなるというトレードオフがある。
ΔΣ変調器の帰還ループを2次以上の多段とすると量子化雑音の分布は、より急峻な特性となり通過帯域内のダイナミックレンジが向上する。しかし超高域に寄せ集められた量子化雑音も増加する。次数が高いほど帰還回路の安定性維持が困難になるので設計は難しい。
ΔΣ変調は一種の帰還回路であり、3次以上のもので発振する恐れがある。発振現象の一例としてDCオフセットが入力された場合に、トーンが生じる。
多段ΔΣ変調回路の発振防止策として、ループ内の量子化器を複数bitとして比較器の分解能を2値ではなくマルチレベルとした上でディザを導入することで安定動作を確保するA/D変換器が実用化された。1980年代後半にCTI/dbx社に所属していたロバート・アダムスらが、この20bit A/D変換回路を実用IC化したので当時のレコード会社や業務用機器に多用された。その後、ΔΣ変調器の帰還ループを工夫して安定動作するMASH(NTT松谷)などの帰還回路が考案された。MASHは、巧みな多重帰還回路と中速ともいえる32fs動作の3次ΔΣ変調器とPWM動作の1bit量子化器を用いた。また、旭化成マイクロシステム社、シーラスロジック社、アナログデバイセズ社からも帰還ループ内の比較器・量子化bit数が1bitのA/D変換ICが発売されるようになった。当時、これらのA/D変換ICは 64 fs 5 次 ΔΣ 1 bit を用いたが、1bit量子化器は比較器の分解能が2値しかないためにディザを重畳するとオーバーフローしてしまい、発振対策としてディザを用いることができないので回路設計は困難を極めた。このため再び近年ではΔΣ変調器の帰還回路内にある量子化器を1bitではなく複数ビット (4~5bit等) で量子化器を用いるようになった。この場合に問題となるマルチビット量子化器のゼロクロス歪みは、抵抗器のローテーションなどの手法で直線性を確保している。
高速標本化1bit 信号処理は、早稲田大学理工学研究所の山崎芳男教授が考案提唱した新技術である。録音時も再生時も高速標本化1bit量子化するならば、わざわざPCM信号に変換せずにそのまま伝送すれば特性が良くなる。その理屈から新しい高音質フォーマットであるSuper Audio CDに用いられているDSDは生まれた。1bit 64fs (2822.4kHz)ΔΣ変調信号を直接記録・再生する方式である。ΔΣ変調された高速1bit量子化データを再生する場合、アナログフィルタを通すだけで信号が得られるという特徴を用いたものである。(実際にはS/N確保が困難なために、DACレス-純アナログLPFを採用したSACDプレーヤーは発売されていない)近年では128fs~256fsなど非常に高い周波数で標本化を行っているためΔΣ変調器の次数は低い回路で済むという利点があり、山崎芳雄教授が考案提唱した高速標本化1bit 信号処理は、必ずしもΔΣ変調器の仕組みを活かすことは前提とはしていない。比較器・量子化器の追随速度が得られれば2次以下ΔΣ変調器での1bit符号化も可能であり、将来はΔΣ変調器を用いない超高速1bit信号処理も考えられる。この意味で早稲田大学山崎芳男教授が1bit量子化器に拘っているのは、このような理由である。
近年の録音には 128 fs 1 bit ΔΣ 変調回路が用いられている。128 fs ΔΣ 式 AD 変換器の中には、量子化器は4bitや5bitで構成するものも出現している。このため 128 fs 5 bit 符号は、SACDのフォーマットである 64 fs 1 bit 符号にデシメーションするので、間引きをしない=デシメーションしない=ダイレクトとは言えなくなっている。パッケージメディアの標本化周波数と量子化bit数を固定してしまっているために、上記の高速標本化1bit信号処理のようなフレキシビリティに欠けるわけである。
原理
ΔΣ変調の原理。積分回路と量子化誤差のフィードバック回路からなる。ここでは量子化器は簡素化説明のため1bit=2Levelを出力している。実際には量子化器のビット長は1とは限らない。近年では32Levelや5bit等低bit量子化器が主流である。 この回路が安定になるのはループの極がz平面上の単位円内にある場合だけである。この回路は入力信号の大きさによってパルス頻度を変化させているが、帰還ループのもつ伝達特性はノイズシェーピング特性を有しているのでΔΣ変調を用いない超高速標本化の場合のようなパルス密度変調とはいえない。 この回路はまた、ノイズシェイパーそのものであるが、実際の回路では、上記の帰還ループは多重帰還回路となる。積分後に比較器を通るため、高域信号に比べ低域信号に対する追従性が高く、また量子化誤差が積分されず直接信号にフィードバックされるのでΔ変調に比べ急激な信号の変化に対する応答が速く、伝送の途中で誤りがあっても、その悪影響度合いは少ないという利点を有する。
逐次比較型A/D変換器と高速標本化⊿Σ変調+デシメーション回路A/D変換器の量子化雑音の分布形状
しばしば16bit44.1kHzのPCM音源の量子化雑音は平坦に分布するが、⊿Σ変調器を用いた1bit2.8MHzDSD音源の量子化雑音は平坦ではないと紹介されることが多い。 これは、16bit44.1kHz音源にはノイズシェーピングを用いない逐次比較型A/D変換器などを用いたと誤解したので、PSD(パワースペクトルデンシティ=量子化ノイズの分布)は周波数によらず等しく平坦であると考えたと思われる。しかし現在のいわゆるPCM方式録音に用いられているA/D変換回路は、⊿Σ変調器を有する高速標本化低bit量子化フロントエンド部の後ろに、デジタル・デシメーション・フィルターで構成されている場合が殆なので、PCM音源=PSDが平坦分布とは言えないことを理解しておく必要がある。
例えばDSDレコーディング黎明期に市販されていた旭化成AK5390やアナログデバイセズAD1879というA/D変換ICの場合、このICの出力bit数は20bitや18bitで標本化周波数は44.1kHzや48kHzだった。 実はAK5390やAD1879内部には2.8224MHz1bit5次⊿Σ変調器を有するフロントエンド部と、その後ろには1bit2.8224MHzを1/64に周波数変換を行うデシメーション・フィルター回路が搭載されていた。 つまりAK5390の出力は20bit44.1kHzであっても、IC内部では1bitA/D変換と1/64周波数間引き動作が行われてマルチビットPCMデータが出力されるので、量子化雑音の分布をみるとフロントエンド部の⊿Σ変調器の特性によってPSDは平坦ではなかったが、このようなA/D変換器の回路構成は現在市販のものでも同じである。
ここで、もうひとつ覚えておかなければならないのは、上記のようなA/D変換ICのデシメーション回路が24bitで出力されていても、そのダイナミックレンジが24bit相当(144dBと誤解している例も多い)になる訳ではなく、あくまでもダイナミックレンジは⊿Σ変調器やアナログバッファアンプ回路の出来栄えによるという点である。
脚注
関連項目
- DSD
- Super Audio CD
- MASH
- DPCM - Δ∑変調の基礎となっているΔ変調は、ファミリーコンピュータに搭載された音声チップの機能として有名である。