導電性高分子

出典: フリー百科事典『ウィキペディア(Wikipedia)』
2014年3月9日 (日) 06:46時点における権田原 (トーク)による版
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
移動先: 案内検索

導電性高分子(どうでんせいこうぶんし)または、導電性ポリマー(conductive polymers、intrinsically conducting polymers、ICPs)とは、電気伝導性を持つ高分子化合物の呼称である[1][2]共役したポリエン系がエネルギー帯を形成し伝導性を示すと考えられている。代表的な物質としてはポリアセチレンポリチオフェン類などが挙げられる。「導電性」と呼ばれているが、実際の性質は導体というより半導体であり、高分子半導体などと呼ぶ場合もある。

応用分野

導電性は自由電子を持つ金属固有の性質で、自由電子を持たない有機材料である高分子は電気を流さない絶縁体であり、その性質ゆえ電気・電子分野においては絶縁材や誘電体などに使われてきた。

しかし、1970年代に白川英樹らによるポリアセチレンフィルムの合成により電気が流れる高分子、つまり導電性高分子に関する研究が飛躍的に発展し、現在ではATMなどの透明タッチパネルや、電解コンデンサや電子機器のバックアップ用電池、携帯電話やノート型パソコンに使用されているリチウムイオン電池の電極等に応用されている。また、導電性高分子は導電性だけでなく発光性を有し、かつ製膜性を有するのでフレキシブルディスプレイの実現が可能な有機エレクトロルミネッセンス(有機EL)への応用や、シリコン等の無機半導体でなく有機物を利用した有機トランジスタ、導電性高分子をインクとしてインクジェット技術などを利用し直接基板にパターンを作るプリンタブル回路などの次世代への研究・実用化も盛んに行われている。

また、現在、太陽電池などで透明導電体としているITO(インジウム・チタン酸化物)のインジウム、その代替品の亜鉛酸化物の資源量が充分でない事、金属系が透明導電フィルムが曲げに弱い事もあって、金属性透明導電体の代替物としても(電気伝導度が現在半導体レベルではあるが)注目されている

 主な現行製品 

有機ポリマータッチパネルの解説[3]

尚、導電性プラスチックのフォトエッチング技術も開発されている[4]

導電性の改良

導電性高分子の多くは一般に2重結合と単結合が交互に並んだ構造、つまりπ共役が発達した主鎖を持ち、導電性はこの性質に起因する。すなわち導電性高分子の多くはπ共役系高分子であるが、σ共役系高分子についても多くの研究が進められている。

共役系高分子は共役を持つので、一般の高分子と異なり導電経路は有するものの、自由に動ける電荷移動体、つまりキャリアが存在しないためそれ自身では導電性を発現しない。しかし、シリコン等の無機半導体のようにキャリアをドーピングし自由に動けるキャリアを注入することで導電性を発現させることができる。

このドーピングは、ヨウ素五フッ化ヒ素などの電子受容体(アクセプタ)やアルカリ金属などの電子供与体(ドナー)等の適当な化学種を高分子に添加することで行われ、化学ドーピングと呼ばれる。このように、化学ドーピングにより導電性高分子は自由に動くことのできるキャリアを生じるため、有機物でありながら金属に匹敵する導電性を有するのである。

これまでにポリアセチレンをはじめとし、芳香環を有するポリパラフェニレンポリアニリンポリチオフェンポリパラフェニレンビニレンなど多くの導電性高分子が合成され、研究が行われている。

2000年、導電性ポリアセチレンの発見と開発に貢献した白川英樹は、アラン・ヒーガーアラン・マクダイアミッドと共に導電性高分子の発見と開発への功績によりノーベル化学賞を受賞した。

有機光伝導体

テンプレート:Main 光が照射されると導電性を持つ性質を活用して複写機レーザープリンタ等に使用される。

有機太陽電池

テンプレート:Main 有機物によってできる太陽電池で色素増感型と有機薄膜型等がある。

脚注

  1. IUPAC Gold Book - conducting polymer
  2. テンプレート:Cite book
  3. 有機ポリマータッチパネル
  4. 導電性高分子のフォトエッチング

外部リンク

関連項目