閘門

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索
ファイル:Grave canal lock.jpg
オランダ、Graveにある閘門と水門の複合施設
ファイル:Carlb-trentsevern-lock-01.jpg
カナダオンタリオ州にあるトレント-セバーン水路(Trent-Severn Waterway)第一閘門

閘門(こうもん)あるいはロックテンプレート:Lang-en)は、水位の異なる河川運河水路の間でを上下させるための装置である。閘門の特徴は、固定された閘室(前後を仕切った空間)内の水位を変えられることで、これに対して同じく船を上下させるための装置であるケーソンロック(Caisson lock)、ボートリフト、運河用のインクライン(Canal inclined plane)などでは閘室自体を上下させる。

目的

閘門は、川をより航行しやすくしたり、平坦でない土地に運河を建設したりするために、水位差を克服して船を通航させるために用いられる。

河川航行用の閘門

河川では、急流ダムなどの河川の水位が大きく変化する障壁を迂回して船が航行可能なようにするために閘門が用いられる。

航行用にするための大規模な河川改修では、堰と閘門が組み合わせて用いられる。河川が浅くなっている箇所に堰を設けて深さを増し、堰によって生じる段差か、堰を迂回する人工的な水路の終端に閘門を設置する。このような方法で改修された河川はしばしば水路と呼ばれる。航行可能な河川で最下流にある閘門は、潮の干満のある区間とない区間を隔てている。しばしば、河口部に直接河口堰を建設することで川に干満が生じないようにされることがある。

さらに進んだ河川航行では、より多くの閘門が必要とされる。

  • 川が遠回りしているところをバイパスする水路を建設した場合、上流側の接続点に洪水対策の閘門が造られることがある。
  • 水路が長くなるほど水位の差が大きくなるため、さらにいくつかの閘門が必要とされることがある。このような水路は実質的には運河となる。

運河用の閘門

初期の運河で平坦な場所を通っていたものは、丘や窪地があるとそれを避けて迂回して通っていた。より複雑な地形を克服できる技術が開発されるにつれて、建設コストや通航時間の点で不利な迂回なしに水位の差を克服するために閘門が普及した。後に建設技術がさらに進歩すると、長いトンネル掘割築堤やさらにインクライン、ボートリフトなどの機械的な装置を建設して、障壁を直接的に横断しようとするようになった。しかしながら、閘門はこれらの方式の補完として建設され続け、現代的な運河においても本質的な要素となっている。

基本的な構成と運用

ファイル:Canallock.png
一般的な運河の閘門の平面図と側面図。上流側・下流側にそれぞれ設置されたマイターゲートにより、運河のその他の部分と閘室が仕切られている。下流側の水位が低くなっている時に上流側から掛かる水圧に耐えるために、どちらのゲートも上流側に山形になるようにある角を成して扉が接するように構成されている。

すべての閘門には3つの要素がある。

閘室
閘室は船を収容して水位を上下させる部分で、運河の上流側と下流側をつなぎ、1隻あるいはそれ以上の船を収容するために十分な大きさがある。
閘門扉
閘門扉は閘室の両端に設置されて、運河区と閘室を区分する水門の一種である。2枚に分割された扉でできていることが多い。船が閘室に出入りする際に閘門扉が開けられ、閉じられると防水構造となる。閘門扉が設置されている部分を扉室と呼ぶ。
給排水装置
閘室に必要に応じて水を入れたり出したりする装置。上流側と閘室、閘室と下流を結んで水を出し入れする構造で、扉(バルブ)が設置されており自由に水の流れを制御できるようになっている。扉は伝統的にはラック・アンド・ピニオンの機構により手動で上げ下げされるパネルであった。大きな閘門ではポンプを用いることもある。ただし、基本的に上流側から下流側へ水を流すだけで運用できるので、必ずしも動力による揚水は必要ではない。

下流から上流へ向かって船を航行させる場合には、以下のような手順を採る[1]

  1. 閘室内の水位が下流側と同じになっていない場合は、閘室と下流側をつなぐ給排水装置の扉を開いて、閘室内の水を下流側へ排出し、水位を下流側と同じにする。
  2. 下流側の閘門扉を開いて船を閘室に入れ、閘門扉を閉じる。
  3. 上流側と閘室をつなぐ給排水装置の扉を開いて、上流側から閘室に水を流し込み、水位を上流側と同じにする。
  4. 上流側の閘門扉を開いて船を出す。

上流から下流へ向かって船を航行させる場合は、この逆の手順を採る。どちらの向きに航行するときでも、閘室内の水位を上流側に合わせるときは水を上流側から閘室内に注ぎ込み、閘室内の水位を下流側に合わせるときは水を閘室内から下流側に排出する。したがって常に水は高いほうから低いほうに流れるので、動力による揚水の必要はなく、給排水装置の扉を開閉するだけでよい。

通常の閘門における水の給排水速度は、水位にして1 - 3 cm/程度に設計され、それより速いと船の動揺の問題が起きる[2]。一般的な閘門では、閘門扉を開きまたは閉鎖するためには0.5分程度、船が閘門に入るためには6分程度、閘門から出るためには5分程度、給排水には5分程度、その他に9分程度かかり、合計すると1隻の船が通過するために26分程度となる。これは閘門扉の形状や給排水装置の能力、周辺の水路の設計などにも依存する[3]。また、下流側から船が来たのに閘室内の水位が上流側になっている場合は、まず水位を低下させる必要があるので、その分の待ち時間も増えることになる。このことを考えると、上下の船が交互に閘門を通航するのが最も効率が良くなる。

ファイル:Canal-sequence.jpg
閘門の運用
1-3. 空の状態の閘室に船が入る
4. 下流の閘門扉と給排水装置の扉が閉じられ、上流側の給排水装置の扉が開けられて閘室に水が入り始める
5. 閘室が水で満たされて船が上流側の水位まで持ち上げられる

構造

簡単のため、この節では閘室の両端に閘門扉を備えた、基本的な方式の閘門について説明する。後の節でその派生形を説明する。

図に一般的な閘門の平面図および断面図を示す。図のAとCが扉室と呼ばれる部分で、Bが閘室と呼ばれる部分である。この例では扉室にはそれぞれマイターゲートが備えられている。この図では左側が上流となっており、このため左側に山形になるように扉が組み合わせられている。これは水圧が扉を押し付けて閉じられるようになっているからである。Aの方を前扉室あるいは上流扉室、Cの方を後扉室あるいは下流扉室と呼ぶ[4][5][6]

閘門扉が閉じられたときに、水密を保ち扉を支えるために、底から飛び出している図中cの部分を閘門閾と呼ぶ。また前扉室と閘室の間の底にdで示す段差があり、この部分を階壁と呼ぶ。閘門扉が開いたときにこれを収めるeで示す壁の窪みを戸袋と呼ぶ。hで示した上流側と下流側の水位差を閘程あるいは揚程と呼ぶ[4][5]。この閘門の有効長は、aからbまでの距離で与えられる[7]。また有効深さは水面から閘門閾までの深さで決定され、これを閾深と呼ぶ[4]

閘室

閘室(こうしつ)は閘門の主要部分で、船を収容して閘室内の水位を上下させるようにできている。石や煉瓦鋼鉄コンクリートなどで造られた防水構造の囲いで、両端が閘門扉によって運河区から区切られている。

閘室の大きさは、運河の設計で想定された最大の船舶の大きさに少しの動きの余裕を考えたものになっていることが多く、また時には一度に多くの船を通せるようにするためそれより大きく造られていることもある。通航する船に対して閘室有効長は運河用で3 - 10 m程度、河川用で4 - 10 m程度、閘室有効幅は運河用で0.2 - 1.5 m、河川用で0.3 - 1.5 m程度、深さは運河用で0.2 - 1.0 m程度、河川用で0.3 - 1.0 m程度の余裕をみる。また閘門上にを通したり、閘門扉を引揚扉にする場合などは、最高水位に対して4 - 4.5 m程度の余裕を持った高さに設置する。閘室内では船はとてもゆっくり進行するので、深さの余裕は運河区に比べて少なくてもよい。閘室の建設費用に最も影響するのは深さで、それに比べると長さや幅は大きく取りやすい。しかしむやみに大きな閘室にすると、1回の船の通航で消費する水の量が多くなるという問題がある[8]

閘室の側面は側壁と呼ばれ、擁壁と同様の構造になっている。垂直な側壁を建設すると用地を節約でき、また1回の通航で消費する水を少なくできるが、圧力や重量に耐える頑丈な構造にする必要がある。傾斜した側壁にすると構造は簡単になるが、用地を多く必要とし1回の通航で消費する水が増加する[9]。側壁には船の衝突に備えて防舷材を設置することがある。また船を陸上から引いて移動させることがあるので、曳舟道として側壁に段をつけることがある。これが特に大きくなると、パナマ運河のように機関車による牽引となる。他に側壁には閘室内の船舶との連絡などのために梯子階段が設置される[10]

階壁

前扉室の内側下部から閘室内へ狭く水平な張り出しが出ており、この部分の壁を階壁(かいへき)と呼ぶ。階壁は前扉室の底の部分が閘室側に露出しているものである(右の写真を参照)。船の端をこの張り出しに乗り上げさせることは、閘室内の水を抜く時に起きる危険の1つであるので、張り出しの先端の位置が白い線で閘門の脇に描かれている。張り出しの先端部分はカーブを描いていて、中央部分より両端部分が前へ張り出している。閘室の有効長はこの部分から、後扉室の閘門扉の可動範囲までとなる。 テンプレート:-

扉室

扉室(ひしつ)は、閘門扉を設置して開閉させる土台になる部分である。閘門扉としてマイターゲートを使用するものでは、扉室の底にある閘門閾とゲートの回転部分を支える側壁の部分に強い力が働くので、それを考慮した頑丈な構造とする必要がある。引揚扉を使用する場合は、この部分に門形の塔を立ててゲートを上下させる機構を構成する。この重量を支えるために基礎を強固にする必要がある。また給排水のための暗渠とそれを操作するゲートが設置されることもある[11]

閘門扉

閘門扉(こうもんぴ)は上流区と下流区から閘室を仕切る防水構造の扉である。単独の扉かあるいは1対の扉が、閘室の両端にそれぞれ備えられている。かつてはカシニレなどの木材で造られていたが、近年は鋼鉄製が多い。鋼鉄製のものでも、防水性を良くするために合わせ目のところに木材を使っているものがある。

最も一般的に用いられるのはマイターゲート(mitre gate、斜接扉または合掌扉) と呼ばれ、イタリアのPhilippe Marie Viscontiによって1440年に発明されたものである[12]。マイターゲートは垂直方向に回転軸があり、閉じると両側の扉が上流方向に対して山形に角度が付いた状態で合わさり、わずかな水位差でも水圧によって閘門扉がきっちりと閉じられるようになっている。これにより、隙間から水が漏れてくることを防ぎ、また水位差が付いている時に閘門扉が開いてしまうことも防げるようになっている。閘室が上流区と同じ水位になっていないときは上流側の閘門扉は完全に閉じられ、閘室が下流区と同じ水位になっていないときはなっていない時は下流側の閘門扉は完全に閉じられている。つまり通常の運用では、閘室の両側を同時に開けることはできない。

マイターゲートは構造が簡単であるため閘門扉として最も広く用いられてきた形式であるが、閘程が大きくなると水密を完全に実現できないこと、扉室に扉の回転軸の圧力がかかること、常に水中にある可動部が存在して保守に手間が掛かること、土砂が堆積すると開閉が不完全になること、地盤の不等沈下に弱いこと、給排水時間が長く掛かることなどの数々の欠点もある。また潮汐があるなどで水位の高い側が逆転することがあると、マイターゲートは開いてしまって用を成さなくなるので、反対方向を向けたマイターゲートも設置しなければならなくなり建設費用が高くつく[13]

幅が狭い閘門では、マイターゲートが2枚の扉ではなく、1枚の扉で構成されていることがある。ほとんどのイングランドの狭小運河(閘門幅 約7フィート/2.1メートル)では、上流側の閘門扉は1枚扉になっている。1枚扉の方が建設費が安く、1枚のみ動かせばよいので操作も速い。バーミンガム・カナル・ナビゲーションズのようにさらに節約し、下流側の閘門扉も1枚扉にしているところがある。これは速く通過できるが、下流側の扉は上流側の扉より高さが大きいためより重くなり、また下流側の扉は閘室内側へ開くため、2枚扉ならば扉の開く範囲を狭くできるのに対して1枚扉は大きく開き、その分閘室を長く造らなくてはならない。狭小運河であってもボスリー運河 (Bosley)、マックルスフィールド運河 (Macclesfield Canal) のように、閘室両端に2枚扉を備えている運河もあるが、これは少ない。

閘門扉として引揚扉(スライドゲートまたはローラーゲート)を用いることもある。引揚扉は扉を垂直に上に持ち上げて開ける構造で、持ち上げるために扉室には門形の塔が建設されている。複数枚の板を組み合わせて扉を構成することもあり、これは塔の高さを低く抑えるために用いられる。引揚扉を利用すると、扉室の長さを短くすることができて、これにより水も節約することができる。マイターゲートより水密を保ちやすく、またマイターゲートのように回転軸に掛かる力が扉室に働かないので側壁の構造を単純にできる。潮汐があっても1枚の扉で済む。さらに扉を完全に水上に引き揚げることができるので、点検や保守を楽にできるといった利点がある。一方引き揚げ用の塔を建設する費用がかかり、また扉を引き揚げる高さが船の高さを制約するという欠点がある[14]

ファイル:LgRadialGatefigc4-6.jpg
テンターゲートの構造図

テンターゲート(ラジアルゲート、セクターゲート、扇形扉)は回転軸が水平方向にあり、円弧状の扉を回転させて開閉するもので、構造が簡単で丈夫であり、応力的に安定であるといった利点があるが、閘門扉としては水面からのクリアランスを確保しづらいため用いられる例は少ない[15]。シャッターゲート(フラップゲート)は扉室の床に水平方向に回転軸があり、開いているときは床に扉体が寝かされており、閉じるときにこれを引き起こす構造のもので、側壁に大きな力が掛からないという利点があるが、回転部分が常に水中にあって補修が困難で、また船が竿をさして通航するときはこれによってゲートが損傷してしまう危険が大きいという問題がある[16]。浮戸は大きな1枚の扉を水に浮かせて移動させる構造のもので、扉室の脇に大きな戸袋を造ってそこに引き込むことで開ける。戸袋のために扉室が大きくなる欠点があるが、ドックや大型の海洋運河の閘門などで採用されることがある[17]。回転セクターゲートという、垂直に回転軸があって横に回転して水路を仕切る閘門扉もあり、イングランドでは、リッブル・リンク (Ribble Link) の海側の閘門と、ライムハウス・ベースン (Limehouse Basin) のテムズ川へ通じる閘門で使われている。かなり巨大なものとしてはロッテルダムの洪水防止用のものがある。

下流側の閘門扉は上流側の閘門扉より全体の高さが大きくなっている。これは上流側は上流区を仕切るだけの高さがあればよいのに対して、下流側は閘室を仕切るだけの高さが必要だからである。上流側の閘門扉は上流側の運河の深さに開閉桿などを取り付ける高さがあればよいが、下流側の閘門扉は上流側の閘門扉の高さに加えて、その閘門の閘程分の高さが必要である。引揚扉を用いる場合は扉自体の高さは下流側の方が高くなるが、扉室に設ける塔の高さは同じで済む。後扉室を船が通航するときの水位は低くなっていて、塔を高くしなくても前扉室と同じクリアランスを確保できるからである。

上流・下流の閘門扉の種類が違っていることもある。マイターゲートの閘門扉のうち一方だけが引揚扉に置き換えられることもある。例えばサルターヘッブル閘門 (Salterhebble Locks) では、最下流側の閘門の下流側の閘門扉のバランスビームの動作する空間が、の拡幅によって制限されることになったため引揚扉に置き換えられた。ニーン川 (River Nene) では、多くの閘門がこの配置となっており、洪水の時には上流側のマイターゲートを開け、下流側の引揚扉も開けた状態にして、閘室がオーバーフロー対策の水門として機能するようにしている。 テンプレート:-

開閉装置

ファイル:JesusGreenLock-Cambridge.jpg
前扉室の閘門扉、開閉桿と給排水用扉の巻き上げ装置が見えている

開閉装置(かいへいそうち)は、閘門扉を開閉する装置である。古くから人力によりマイターゲートの開閉が行われてきた。近年では電力や蒸気力、水力などの駆動装置によるものが一般的で、特に電力を利用したものが多い。動力駆動装置があるものでも、予備として人力で開閉できるようになっていることが一般的である。マイターゲートの開閉には、ゲートの上部に開閉桿(かいへいかん)という棒を取り付けて、これに鎖を巻き取る装置や歯車を使って回転させる装置などを組み合わせて、人力または動力によってこれを駆動するようになっている。引揚扉の場合は上からワイヤーで扉を吊るしており、これを巻き上げ、巻き降ろして開閉する。扉の重量を相殺するカウンターウェイトが反対側についていて、少ない力で動作できるようにされていることが一般的である[18]

人力でマイターゲートを開閉する場所では、バランスビームが取り付けられている場合がある。これは曳舟道の上を通り陸側から伸びている長い腕である。重い閘門扉を開閉するためのてことなるだけでなく、閘門扉を簡単に開閉できるように閘門扉の重量の釣り合いを取っている。 テンプレート:-

給排水装置

給排水装置は、上流区から閘室に、あるいは閘室から下流区に水を流すための装置である。

閘門扉に穴が開けられていて、この部分に別の扉をつけて開閉できるようにすることで水を給排水する構造のものは、構造が単純であり古くから利用されてきた。しかし閘室内に流れ込む水が船を動揺させる問題がある。また閘門扉の構造上、一定以上の大きさの穴を開けることができないので、給排水に時間が掛かる[19]。ただし、後述する暗渠を設けることによって構造物の強度問題が発生することを避けるために、新しい大型の閘門において水勢を弱める機構を取り付けて採用される例がある。しかし水流が渦をなすことになるため、閘門扉や閘室の底の強度を確保しなければならない。水勢を弱める機構と組み合わせるときは、引揚扉については上下流両方に採用することがあるが、マイターゲートについては下流側のみに採用するのが普通である[20]

現代の閘門で一般的に広く使用されているのは閘渠(こうきょ)を利用した方式である。これは扉室と閘室の側面または底面に暗渠を設置して、その途中に給排水用扉を設けて開閉し給排水するものである。閘室内の暗渠の口は、給水時にも排水時にも兼用する設計が普通である。船の動揺を抑えるために、閘室の側面に多数分散させて閘渠の口を設けることで、水の勢いを分散させるように設計することもある。閘室の底にも閘渠の口を配置するとさらに勢いを抑えることができるが、工事が複雑になり工費が高くつくという問題がある[21]。閘渠の断面は一般に矩形かその上部をアーチ状にしたものとなっている[22]

閘門扉として引揚扉を用いた閘門では、引揚扉をわずかに開けることで給排水するものがある。この場合水の勢いを弱める設備が必要とされる。閘渠を用いないため、側壁の構造を単純にできる[23]

水の流入・流出は通常重力式であるが、とても大きな閘門ではポンプを使ってスピードアップしていることもある。

給排水用扉

閘門扉の給排水口あるいは閘渠には、給排水を制御するための扉が付けられている。この扉には引揚扉やテンターゲート、回転ゲートなどが一般に用いられる[24]

この扉のことを英語ではパドル (paddle) という。また、閘門扉に設けられたものをゲートパドル (gate paddle)、閘渠に設けられたものをグラウンドパドル (ground paddle) という。2つのゲートパドル、2つのグラウンドパドルを上流・下流双方の閘門扉に、最大で8つのパドルが1つの閘門に設置されることがあるが、普通はそれより少ない。1970年代から長い間イギリスの水路では、2つのグラウンドパドルがあれば上流側閘門扉にゲートパドルを備えないことが方針となっていた。これは安全上の問題からで、上流へ進む船が不注意に開けられたゲートパドルから入ってきた水によって水浸しになってしまうことがあるからである。しかしこれにより閘門の運用は遅くなり、あちこちで渋滞を招いて不満が起きていた。1990年代後半からこの方針は緩和されたが、一般的であるとはいえない。

巻き上げ装置

ファイル:ZSchützmechanik.jpg
オーストリア、ヴィエナー・ノイシュテッター運河 (Wiener Neustädter Kanal) で200年使われているパドル巻き上げ装置
ファイル:BCN water conservation lock.jpg
バーミンガム・カナル・ナビゲーションズ (Birmingham Canal Navigations) の鍵付きの巻き上げ装置

巻き上げ装置 (winding gear / paddle gear) は、パドルを持ち上げたり下げたりするための機構である。大きな閘門では動力による巻き上げ装置があり、これに人力による機構を予備として備えている。小さな閘門では人力によるのが主である。

イギリスの運河網においては手動による装置が多い。巻き上げ装置の筐体から四角い断面の棒が外に顔を出している。これがピニオンの軸であり、パドルの上側に取り付けられた歯型の棒(ラック)と組み合わせられている。閘門を操作するために船から上陸した要員が携帯している四角い受け口のウィンドラスをこの軸に取り付けて回転させる。これにより歯車が回転しパドルが持ち上げられる。ツメをラックに差し込むことで、パドルが持ち上がっている時に不意に落としてしまうことを防ぎ、またウィンドラスを外している間も持ち上げたままにしておいて、要員が同時に他のパドルを操作できるようになっている。ただし船が閘門から出た後もパドルを上げたままにしておくことは失礼で、水の無駄遣いである。パドルを下げるためにはツメを外して、ウィンドラスにより巻き戻して降ろされる。ツメを外していきなりパドルを落とすことは、機構を壊してしまう恐れがある。巻き上げ装置は普通鋳鉄でできており、高いところから落とすと粉砕されたりひびが入ったりする。バーミンガム・カナル・ナビゲーションズのように、いたずらによる水の浪費が問題となっている場所では、巻き上げ機構にいたずら防止の (vandal-proof locks) (近年は当局がより聞こえのよいと考える「水保全装置」 (water conservation devices) の名で呼ばれる)が取り付けられ、パドルを操作する前に鍵を開ける必要がある。この鍵は公式には「水保全鍵」 (water conservation keys) と呼ばれるが、船乗りからはしばしばその形からT-keysと呼ばれ、また最初に備えられたリーズ・アンド・リバプール運河 (Leeds and Liverpool Canal) の鍵の形が手錠に似ていたことから「手錠鍵」 (handcuff keys) とも呼ばれる。一方、手動で動かすパドルの中には、ハンドルが常時取り付けられているため取り外し可能なハンドル(ウィンドラス)が必要ないものもある。

リーズ・アンド・リバプール運河では、異なる種類の巻き上げ装置が多数ある。パドルの上部に取り付けられた、ねじを通された棒を水平で大きな蝶ネジを回すことによって開けるようになっているものがある。他には長い木製の棒を持ち上げて、閘渠を塞いでいる木板を操作するようになっているものもある。これはジャック・クラフス (jack cloughs) と呼ばれている。下流側の閘門扉のパドルには、一般的な垂直に持ち上げるものではなく、水平なラチェットによって木板を横にスライドさせるものもあった。これらの多くの特異なパドルは次第に「近代化」されて、稀なものになってきている。コールダー・アンド・ヘッブルナビゲーション (Calder and Hebble Navigation) では、コールダー・アンド・ヘッブル・ハンドスパイク(長さ4インチ中2インチが硬い木でできている)という棒を地面の高さの溝付き歯車に繰り返し挿し込み、下に押し出すことで水平な軸に沿って歯車を回転させることでパドルを操作するようになっているものがある。モンゴメリー運河 (Montgomery Canal) の一部分では、底のパドルが側面パドルの位置で操作できるようになっている。閘門扉の脇を迂回して閘渠が閘室内に通じているのではなく、運河の底に埋められた閘渠を通じて水が流れるようになっている。このパドルは水平にスライドする。 テンプレート:-

油圧式巻き上げ装置

1980年代からイギリスの水路では油圧式の巻き上げ装置を、特に操作が重い下流側の巻き上げ装置に導入し始めた。直径1フィートほどの金属シリンダーがバランスビームの上に取り付けられ、小さな油圧ポンプによって動作する。表面から軸が出ており、通常のようにウィンドラスによって操作し、実際のパドルへは小さなパイプによって力が伝達される。このシステムは広く取り付けられ、運河によってはとても一般的なものとなった。しかし2つの重大な欠点が明らかとなった。まず従来の装置に比べて設置・保守に多大な費用が掛かることと、壊れやすいこと、特にいたずらをする人がパイプを切断するということを覚えてしまってからはよく壊れるようになったことである。さらに悪いことに安全上の問題もあり、パドルを一旦上げると、緊急事態でも急に降ろすことはできず通常通りに下げなければならず時間が掛かることである。これらの問題により1990年代後半に油圧式装置廃止の方針となったが、巻き上げ装置を取り替える必要がでるまで置き換えられないため、今でも多くの装置が残っている。装置の取り替えは20年に1度くらい行われる。

ウィンドラス

ウィンドラス (windlass) は、閘門のパドルを開閉するために用いられる、取り外し可能なクランクハンドルのことである。巻き上げ機構自体のことを指す用語ではない。

以下はイギリスの運河におけるウィンドラスについて説明する。もっとも単純なウィンドラスは、半インチほどの直径の円形断面で2フィートほどの長さの鉄棒でできていて、L字形を成すために一部分が曲げられている。短い部分はハンドルと呼ばれ、長い部分はアームと呼ばれる。アームの端に、巻き上げ機から出ている軸にちょうとはまるサイズの方形のソケットが溶接されている。

ソケット
伝統的には、ウィンドラスには1つのソケットがあり、特定の運河用に設計されていた。巻き上げ機の軸のサイズが異なるようないくつもの運河を通じる船の運航をする場合には、いくつも異なったウィンドラスを携行する必要があった。現代のウィンドラスには通常2つのソケットが付いている。小さな方はブリティッシュ・ウォーターウェイズ (British Waterways) 標準の軸サイズのもので、1990年代初頭にはほぼ普及した。大きい方は軸サイズを変更できなかったナプトン・ジャンクション (Napton Junction) 以北のグランド・ユニオン運河 (Grand Union Canal) 用のものである。
ハンドル
ハンドルは両手で握るために十分な長さを持ち、パドルを上げ下げするために十分なてこの作用を得られるだけのソケットからの距離を持っている。初心者の船乗りがやわらかい手で握って、荒い鉄のハンドルとの摩擦で手を傷めないように、自由に回転できるスリーブが取り付けられていることもある。
アーム
長いタイプのウィンドラスでは、よくてこの作用を効かせて固いパドルを動かせるようにソケットとハンドルが遠く離されている。あまりにアームが長すぎると、回転させる時に一番下側にハンドルが来た時に、こぶしをバランスビームに打ち付けて擦りむく恐れがある。現代のよくできたウィンドラスでは長さを調節できるアームが備えられていることもある。
材質
初期のウィンドラスは、鍛冶屋により1つ1つ鋳鉄の切れ端から手作業で作られていた。より後の時代には鉄や青銅鋳造鍛造、さらに溶接などで作られている。船乗りの中には、自分用のウィンドラスをクロムめっきするなどして使いやすくし、錆を防いでいる人もいた。今日ではウィンドラスは滅多にめっきされることはなく、代わりにアルミニウムを材料にすることが普通である。アルミニウムは滑らかでさびにくい表面を持ち、同じように長持ちして手を傷めないという特徴を持つ上に、とても軽い。このようなウィンドラスの中の1種、ダントン・ダブル (Dunton Double) はソケットを1つだけ持っているが、うまくテーパーを付けて作られているため異なるサイズの軸を回すことができる。

その他の関連施設

閘門を利用する船舶に合図するために、扉室付近に信号装置を取り付けることがある。また現在の水位を示すための量水標が取り付けられていることもある。夜間にも船舶を通航させるときは、照明設備が設置される[25]

ある程度以上の大きな閘門になると、閘門管理者が常駐していて船舶の通航時に閘門の関連機器の操作を行っている。一方、イギリスの内陸水路では閘門は無人であることが多く、船は閘門のところへさしかかると、閘門を操作する要員を上陸させて船側の人間が閘門操作を行う。専門の管理者が配置されている閘門では、管理事務所が置かれている。イギリスでもある程度以上の閘門、特に商用の水路では管理者が配置されており、またあるいは閘門が大きかったり複雑な機能を備えていたりして、通常のレジャー目的の利用者がうまく操作することができないようなものもそうである。例えば、テムズ・アバブ・テディントン (Thames above Teddington) はほぼレジャー目的の水路であるが、閘門には通常人が配置されている。近年になってようやく船乗りは管理者がいない時に油圧式装置を限定的ながら操作することが許されるようになった。

川に堰を建設することは魚や船の通航を阻害する。マスサケなどの魚は産卵のために遡上するので、魚道を設置してこれらを阻害しないようにする。

種類

単扉室閘門

単扉室閘門(たんぴしつこうもん)は、扉室が閘室の片側に1個あるのみで、閘室内部がドックになっているものである[26]。水位差のある水路間を航行する目的ではなく、海や河口付近のに設けられ、潮汐による水位差の影響を受けずに船の貨物扱いなどを行えるようにするものである。

複扉室閘門

複扉室閘門(ふくひしつこうもん)は、単扉室閘門に対して言う言葉で、閘室の両側に1つずつの扉室を持つ通常の閘門を指す[26]

複式閘門

ファイル:Canal Nieuwpoort-Duinkerke tidal lock Veurne 20030621-002.jpg
ベルギー・VeurneのNieuwpoort - Duinkerke運河にある、潮汐のある閘門の閘室の一端にある複式閘門扉

複式閘門(ふくしきこうもん)は、海の潮汐や水位が変わることがある川に運河が合流するなどにより、閘門の両側での水位差が逆転することがある場所に設けられる閘門である。閘門扉として多く用いられるマイターゲートは水位の高い側に向けて設置する必要があり、水位が逆転すると扉が開いてしまい用を成さなくなる。そのため反対側を向けたマイターゲートも設置しなければならない。通常と水位差が逆になったときに船の通航を中止するならば、どちらか一方の扉室に逆向きのマイターゲートを追加して備えればよい。水位差が逆になったときも船の通航を続けたいときには、両方の扉室に2対のマイターゲートを必要とすることになる。このとき、外側の扉室を外扉室、内側の扉室を内扉室と呼ぶ。閘門扉として引揚扉を使用する場合は扉を増やす必要はないが、双方向から水圧がかかることに備えた設計をする必要がある[26][27]テンプレート:-

並列閘門

並列閘門(へいれつこうもん)または双閘(そうこう)は、2つの閘門を横に並べて建設したものである。船の通航量が多くて1つでは捌ききれない場合などに設置される。閘室の側壁を共用にすることで建設費を抑えることができる[26][27]。並列化することで、混雑時の待機時間を短くしたり、自分にとって都合のよい状態になっている閘室を見つけやすかったりする。また2つの閘門を異なる大きさで建設することで、小さな船を通航させるために大きすぎる閘門を使って水を無駄遣いすることを避けることもできる。

また並列になっている閘室をもう一方の閘室に対して節水装置として使用することができるものもある。節水装置として使える並列閘門は、英語ではtwinned lockという言葉が普通使われる。この方式はイングランドではもう長く使われていないが、オックスフォード運河のヒルモートン (Hillmorton) に使われなくなった巻き上げ装置がみられる。

並列閘門はトレント・アンド・マージー運河のヘアカッスルトンネル (Harecastle Tunnel) 以北にいくつか例がある。かつて有名であった、ニューヨーク州ロックポート (Lockport) の階段形閘門も並列閘門であった。5段の対になった閘門で、ナイアガラ・エスカープメント (Niagara Escarpment) の60フィート (18 m) の斜面を東行・西行の船を上下させており、19世紀の技術上の偉業である。ロックポートでは今日では2つの大きな鋼鉄製の閘門になっていて、旧階段形閘門の半分は排水路として使われており、閘門扉を取り外された状態ではあるが見ることができる。

英語で並列閘門を表すpaired lockという言葉は、2段の階段形閘門という意味で使われることもある。チェスターフィールド運河 (Chesterfield Canal) のターナー・ウッド・ダブル閘門 (Turner Wood Double Locks) の例がある。同じ運河にはソープ・ロー・トレブル閘門(Thorpe Low Treble locks、trebleは「3段の」という意味)もある。また2段のフライト・ロックを指すこともある。コールダー・アンド・ヘッブルナビゲーションのソーンヒル・ダブル閘門 (Thornhill Double Locks) の例がある。また初心者はイングランドの運河にある14フィート幅の閘門をダブル・ロックと呼ぶことがあり、これはおそらく狭い幅の閘門の2倍の幅があってナロウボートを2隻同時に同一方向に運航させることができるからである。これはより適切にはブロード・ロック(広幅閘門)と呼ばれる。

フライト・ロック

ファイル:Badgernet Bratch Locks.jpg
スタッフォードシャー・アンド・ウーセスターシャー運河 (Staffordshire and Worcestershire Canal) のブラッチ (Bratch) のフライト・ロック
ファイル:Caen Hill Locks.jpg
ケネット・アンド・エイボン運河のカン・ヒル閘門 (Caen Hill locks) の16連閘門

フライト・ロック(flight lock、「連続閘門」)は、同一のグループとみなされるくらい十分近接して配置された一連の閘門のことである。多くの点から、フライト・ロックは同じ数の閘門が広く散在しているよりも好まれている。閘門を操作する人を上陸させ、再び拾い上げる手間が1回で済むこと、何度も繰り返し船旅を閘門に遮られるよりは、1回でまとめて閘門操作の作業を済ませてしまえること、閘門管理者が常駐していることがあり、船に乗っている人を助けられること、また水の供給が少なくポンプで汲み上げて「リサイクル」しているところでは、1つのポンプで一番下から一番上まで汲み上げられること、などである。フライト・ロックの必要性は純粋に地形によって判断されるが、掘割や築堤によって高度の変化する位置をずらすことにより、意図的に複数の閘門をフライト・ロックにまとめてしまうことがある。デバイジズ (Devizes) のカン・ヒル閘門 (Caen Hill locks) がその例である。

フライト・ロックは階段形閘門と混同してはならない。フライト・ロックでは、各閘門はそれぞれ上流側閘門扉と下流側閘門扉を備えており、各閘門間に短いが運河区がある。各閘門は、通常のやり方で操作される。 テンプレート:-

階段形閘門

ファイル:Bingley Five Rise Locks 1.JPG
ビングリー (Bingley) の5段の階段形閘門

階段形閘門(かいだんがたこうもん)は、大きな閘程を実現するために複数の閘門を直列に並べて、上流側の閘門の後扉室が下流側の閘門の前扉室を兼ねるようにしたものである[26][27]。単純に複数の閘門を並べたものは後述するフライト・ロックであり、中間の運河区がなくなり扉室を上下流の閘門で兼用にしているものだけが階段形閘門である。

階段形閘門には2種類ある。「本当の」階段形閘門は、フライト・ロックを圧縮して中間の運河区がなくなり、上流側の閘門扉が1つ上の段の閘門の下流側の閘門扉を兼ねているものとみなすことができる。しかしながら、階段形閘門とフライト・ロックは等価なものではない。中間の運河区がなくなったことにより、階段形閘門とフライト・ロックの操作方法はまったく違うやり方になるためである。階段形閘門は、1つの閘門に中間段階があると考えた方がよい。一番上流側の閘門扉は通常の閘門扉で、中間の閘門扉は全て最下流の閘門扉と同じ高さになっている。中間の運河区がないため、閘室に水を流し入れるためには1つ上流側の閘室から水を流し出すしかない。また閘室の水を流し出すためには1つ下流側の閘室に水を流し込むしかない。それゆえ、船が登り始める前には一番下の閘室以外はすべて水位を高い状態にしておく必要があり、また降り始める前には一番上の閘室以外はすべて水位を低い状態にしておく必要がある。

「外見上の」階段形閘門でも、各閘室は隣の閘室と閘門扉を兼用している(スタッフォードシャー・アンド・ウーセスターシャー運河のブラッチ閘門は例外)が、水は直接閘室から下流の閘室へ流れ込まず、脇に設けられた池に流れ込む。これにより、使用する前に一連の閘室の水位をどちらかの状態にしておく必要はない。

イングランドにおける有名な「本当の」階段形閘門にはビングリー (Bingley Five Rise Locks) のものがある。2段の階段形閘門はより一般に見られる。ドリッフィールドナビゲーション (Driffield Navigation) のスネークホルム閘門 (Snakeholme Lock) 、ストランチオン・ヒル閘門 (Struncheon Hill Lock) では、下流側の水位が低すぎて後扉室を通過する時に扉室の底が支えて船の航行を妨げたため、下流側に閘室を付け足して階段形閘門に改造された。中国で近年完成した三峡ダムには2つの5段の階段形閘門があり3,000トン以下の船を通すことができる。「外見上」の階段形閘門の例としては、グランド・ユニオン運河のレスター支線 (Leicester Branch) にある、フォクストン閘門 (Foxton Locks) とワトフォード閘門 (Watford Locks) などがある。

中間の運河区がないことにより、「本当の」階段形閘門は、同じ高低差のフライト・ロックに比べて船を運ぶためにより多くの水を消費する。「外見上の」階段形閘門はこの問題がなく、この設計が考案された主な理由となっている。

ファイル:Thorpe Top Treble instructions.jpg
チェスターフィールド運河にある下り方向に3段の階段形閘門を使う方法の説明

階段形閘門の操作はフライト・ロックに比べて複雑である。経験のない人にとっては階段形閘門の操作は難しくみえる。単に優柔不断で操作できないといった問題を除けば、主な難点は、下流側の閘室が受け入れることができる以上の水を流し込んで溢れさせたり下流に大波を起こしてしまったり、逆に上流側の中間閘室を完全に空にしてしまったり(これは緊急時には階段形閘門を乾ドックの代わりに使うことができるということを示しているが)というところにある。こうした事故を防ぐために、最初の閘室以外の全ての閘室を下る時には空に、上る時には一杯にしておくことが大事である。

単独の閘門やフライト・ロックと比べて、階段形閘門の使い方で大きな違いは、船を通過させるもっともよい順番にある。単独の閘門や、中間の水域で船の行き違いができるようなフライト・ロックでは、双方向の船が交互に通るのが明らかに最良である。一方階段形閘門では、同じ方向に続けて船を進める方が効率的である。こうした理由もあって、グリンドリー・ブルック (Grindley Brook)、フォクストン、ワトフォード、ブラッチなどの階段形閘門は少なくとも主なクルージングシーズンには閘門管理者に管理されており、多くの船を一度に上げ、続いて多くの船を一度に下げるという規則を適用している。

フライト・ロックと同様に、広い運河では階段形閘門に複数の船を同時に入れることができる。しかし水を無駄にせずこれをうまく管理するには経験が必要である。イングランドの運河では、閘室が2つ以上ある階段形閘門には普通人が配置されている。ビングリー閘門で5段閘門と3段閘門の両方の面倒をみている管理人は、問題となる事件を20年以上にわたって特に発生させることなく船を迅速に、効率的に運航させている。このようなエキスパートになると、対向する船を同時に中間まで進めてお互いに行き違いをさせたり、ピーク時にはすべての閘室に同一方向へ向かう船を入れたりと、船をサーカスのように運航させることができる。 テンプレート:-

ストップ・ロック

ファイル:Lifford Lane Guillotine Stop Lock west.jpg
バーミンガム、キングス・ノートン (Kings Norton) にある、ストラットフォード=アポン=エイボン運河 (Stratford-upon-Avon Canal) とウースター・アンド・バーミンガム運河 (Worcester and Birmingham Canal) の接続点にあるリフォード・レーンギロチンゲート

ストップ・ロック(stop lock、「遮断閘門」)は、2つの異なる互いに競合する運河の交点に建設されて、水が流出してしまうのを防ぐ、とても小さな落差の閘門である。

イギリスの運河網が競争的だった時代には、既に存在する運河会社は新しい隣接運河が接続することを拒否することがよくあった。このためにバーミンガムのウースター・バー (Worcester Bar) では、ほんの1フィートしか離れていないのに競合運河の船へ貨物を積み替えなければならなかった。

既存の運河会社が新しい運河との接続に利点を見出したり、新設の運河会社が設立認可の法案に接続を必須とする条項を押し込むことに成功したりして、運河が接続されることになると、既存の会社は水源を守り、あるいは場合によっては拡張しようと考え始める。通常、交点では新しい側の運河は既存の運河より高い位置になるように指定された。新旧運河の水位差がわずか数インチであっても、ストップ・ロックと呼ばれる閘門が必要とされた。なぜなら、新しい運河から既存運河へ水が流れ出し続けるのを防ぐ必要があるからである。この閘門は新設の会社の管理下に置かれ、当然ながら新設運河側が上流になっている。これにより新しい運河の水源を守るが、しかしながら必然的に船が通航するたびに既存の運河会社に閘門1杯分の水を差し出すことになる。水が過剰な時には当然ながら既存運河に対して水を連続的に流したままにする。

水位が変化するために常に新設運河の水位が高いことが保証できない場合には、既存会社も同じようにストップ・ロックを、独自の管理下で自分の運河側が上流になるような向きで建設し、新設運河の水位が下がった時には閉鎖するようになっていた。これにより、互いに異なる向きになっている閘門が連続して現れることになる。マックルスフィールド運河の南端が、先に存在していたトレント・アンド・マージー運河のホール・グリーン支線 (Hall Green Branch) に合流するキッズグラブ (Kidsgrove) 近郊のホール・グリーン (Hall Green) に例がある。ストラットフォード=アポン=エイボン運河 (Stratford-upon-Avon Canal) とウースター・アンド・バーミンガム運河 (Worcester and Birmingham Canal) の間のキングス・ノートン接続点 (Kings Norton Junction) の4つの閘門扉を持つストップ・ロックは、どちらの水位が高くても水を遮断するギロチンロックの組み合わせに1914年に置き換えられた。これらのゲートは国有化に伴って常時開けた状態にされている[28]

1948年の国有化後、多くのストップ・ロックは撤去されたり、単独の閘門扉に改造されたりした。ホール・グリーンのストップ・ロックは残ったが、単独の閘門となった。トレント・アンド・マージー運河の頂点にある水路の水位が、ヘアカッスルトンネルの水面上の高さを改善するために下げられて、マックルスフィールド運河より常に低いことが保証されたため、余分の閘門は撤去された。ホール・グリーン支線は現在ではマックルスフィールド運河の延長であると考えられるようになっており、トレント・アンド・マージー運河とヘアカッスルトンネルの北側出口のすぐ近くにあるハーディングス・ウッド接続点 (Hardings Wood Junction) で合流する。

新しい運河の側が高く、というルールは鉄則ではないことは注意しなければならない。例えば、1835年に建設されたバーミンガム・アンド・リバプール運河(Birmingham and Liverpool canal、現在はシュロップシャー・ユニオン運河 (Shropshire Union Canal) の一部)が、1772年に建設されたスタッフォードシャー・アンド・ウーセスターシャー運河に合流するとても浅いオーサーリー合流点 (Autherley Junction) などがある。水路に関するニコルソン・ガイドによれば、シュロップシャー・ユニオン運河側から来る船は、より古いスタッフォードシャー・アンド・ウーセスターシャー運河に入る時に閘門を上る方向に通過するので、新しい運河であるシュロップシャー・ユニオン運河の方が船を通過させるたびに閘門1杯分ずつの水を受け取ることになる。しかしながら、両方の閘門扉を同時に開けることもできるくらい水位差はとても小さいので、得られる水はとても少量である。 テンプレート:-

ドロップ・ロック

ドロップ・ロック(drop lock、「降下閘門」)は、高さの低い橋のような障害物の下を船が通過する間だけ運河の短い区間の水位を下げておくような目的で使われる。使われていなかった運河を修復する際に、運河が使われなくなってから建設された構造物を取り除いたり持ち上げたりすることが不可能であったり高くついたりして、かつ運河の経路変更が不可能なような場合には、ドロップ・ロックを使うことに検討の余地がある。

ドロップ・ロックは2つの通常型閘門を、排水池側を下にして配置したものか、あるいは1つの長い排水池を備えた閘室を持った閘門で構成されている。正式には後者の方がドロップ・ロックである。ドロップ・ロックの両端は同じ水位なので、この閘門の中の水を抜くためには閘室内から水をより下流の川や運河へ流しだしてしまう他ない。あるいはより水の消費を少なくするためには、汲み上げて元の運河に戻す必要がある。2つの閘門を持った方式では、バイパス排水管を造って遮られている区間を迂回して水を流し、より下流の閘門に水を供給できるようにする必要がある。単一閘門タイプでは、閘門内を水で満たして、使わない間は閘門扉を開けたままにしておくことでこれを実現できる[29]

多くの場所でドロップ・ロックの考えが提唱されてきたが、世界で唯一実際に建設されたドロップ・ロックはスコットランドのフォース・アンド・クライト運河 (Forth and Clyde Canal) のダルムア (Dalmuir) にあるものである[30]。この単独閘門タイプのドロップ・ロックは運河の修復に際して、交通量の多い道路にあった跳ね橋が頻繁に使われて交通を妨害するという批判に応えて、跳ね橋を固定橋に取り替えることを可能にするために導入された。閘門の排水はポンプで行うことができるが、かなりの電気を使うので、水の供給量が十分な時は近くの川に水を流しだすことで排水している。このページでドロップ・ロックの操作の様子の一連の写真を見ることができる。同じようなものが、ドロイトウィッチ運河 (Droitwich Canal) の一部区間の復旧に際して建設される予定である。

フラッド・ロック

フラッド・ロック(flood lock、「洪水閘門」)は、川に接続された水路を洪水から守るためのものである。通常、川から運河が分岐する地点に建設される。通常の川の水位では、閘門扉は常に開けた状態になっており、運河の水位は川の水位と共に上下する。

運河の安全上の限界を超えて川の水位が上昇すると、川の水位が下がるまで閘門扉が閉鎖されて閘門となる。これは通常の閘門であるので、水位差があっても運河から洪水になっている川へ(あまり賢明なことではないが)船を乗り出すことができ、また逆に洪水になっている川から運河へ船を避難させることもできる。

運河が同じ川の2箇所をつないでいる航行用水路である場合には、フラッド・ロックは運河の上流側に設置され、下流側には通常の閘門が設置される。

単なるフラッド・ゲートとして使われているフラッド・ロックは、修理しなければ機能しなくなっていることが多い。実際の商業目的に使われていない水路のように、洪水が起きている川に船を出し入れするような目的に費用を投じる必要がない水路では、外側の閘門扉だけが洪水に際して閉鎖されることが多く、その場合内側の閘門扉はすぐに保守されなくなって動作しなくなる。例としてはコールダー・アンド・ヘッブル・ナビゲーションがあり、ボート・ガイドにはフラッド・ロックと記載されているが、単に洪水を防ぐ目的にのみ使われており、洪水が起きている時に船を出し入れするために使うことはできない。

フラッド・ゲート

ファイル:Canal Schoten-Dessel stop lock Ravels 20040813-004.jpg
ベルギー、Schoten-Dessel運河にある双方向フラッド・ゲート

フラッド・ゲート(flood gate、「洪水閘門扉」)、あるいはストップ・ゲート (stop gate) は、フラッド・ロックより安価な同等物である。1つの閘門扉だけがあり、川の水位が高くなると閉鎖されて船の通航はできなくなる。これはフランスの内陸水路では一般的である。フラッド・ゲートは長い運河を複数の区間に分割する目的に使われたり、あるいは堤防が決壊した時に運河の水位より低い周辺地域に浸水することを防ぐために使われたりする。長い築堤や高架水路の両端によく見られる。こうした閘門扉は、開閉棹を備えておらず運河の水位よりちょっと高い程度なので、しばしば見落とされる。 テンプレート:-

シー・ロック

ファイル:Bude haven.JPG
コーンウォール、ブード (Bude) にあるシー・ロック

運河や川を直接入り江や浜と接続しているのがシー・ロック(sea lock、「海洋閘門」)である。シー・ロックは全て潮汐がある。 テンプレート:-

ティダル・ロック

ティダル・ロック(tidal lock、「潮汐閘門」)は、潮汐のある水域とない水域を結ぶ閘門である。これには、潮汐のある川とない川の間のもの、潮汐のある川と運河の間のもの、シー・ロックなどがある。しかしながら、普通はこの言葉は潮汐の状態によって運用に影響があるような閘門のことを特に指す。例としては、

  • 運河と川が合流する地点で、川の方が常に水位が低い場合。必要とされるのは通常の閘門で、運河側を上流とする。潮が満ちていて船が下流側の閘門扉を通過できる時は通常通り運用される。潮が引いて閘門が使えなくなると、閘門扉は閉鎖されて運河に水を留める逆向きのフラッド・ゲートになる。この配置はシー・ロックでも使われる(例: ブード運河 (Bude Canal))。
  • 通常は運河より水位が低い川に運河が合流するが、満潮の時や雨の後など、川の方が水位が高くなることがある場合。閘門扉のうち1つは双方向に機能するように建設される。運河より川の方が水位が高くなると、通常の閘門扉は開いてしまうが、追加した閘門扉が閉鎖されて運河を守り、また川との航行は停止される。機能的にはフラッド・ゲートである。
  • 上と同様であるが、川の方が水位が高い時であっても航行できるもの。閘門は両端の閘門扉とも双方向に設計されており、川の水位が通常のどの段階にあっても船を通すことができる。川の水位が非常に高く、あるいは低くなって航行に不適切な時は、閘門扉が閉鎖されて航行は停止される。

用語

閘程

閘程(こうてい)あるいは揚程(ようてい)は、閘門によって実現される水位の差のことである。イングランドの運河にある閘門の中でもっとも揚程が大きいのは、ケネット・アンド・エイボン運河 (Kennet and Avon Canal) にあるバス閘門 (Bath Locks)[31][32] と、ロッチデール運河 (Rochdale Canal) にあるトゥエル・レーン閘門 (Tuel Lane Lock) で、およそ20フィートある。文献により正確な高さに差があるため、どちらがより大きなものであるかを保証することはできない。どちらの閘門も2つの閘門の組み合わせとなっており、交差する道路の変化に応じて運河が修理された時に組み合わされたものである。もっとも閘程の大きい建設された当初のままのイングランドの閘門はトレント・アンド・マージー運河 (Trent and Mersey Canal) にあるエトルリア・トップ閘門 (Etruria Top Lock) か、オックスフォード運河 (Oxford Canal) にあるサマートン・ディープ閘門 (Somerton Deep Lock) であると考えられ、どちらも14フィートほどの閘程がある。こちらについても文献により差があり、特にエトルリア閘門は地盤沈下に対処するために次第に深くなってきているため、どちらがより閘程が大きいかを確定することはできない。イングランドにおける典型的な閘程は7から12フィート程度で、それより低い閘門も見かけられる。

運河区

2つの閘門間の運河の水平な部分を運河区という。また、ある閘門にとってそこから上流側にある運河区を上流運河区あるいは単に上流区、上区といい、下流側にある運河区を下流運河区あるいは単に下流区、下区という。閘門により船は上流運河区と下流運河区の間を移動する。

水位

英語においては、閘室が上流側と同じ水位にある時にフル (full) といい、下流側と同じ水位にある時にエンプティ (empty) という。保守作業などのために閘室から完全に水が抜かれている状態もエンプティという可能性があるが、この状態に対する混乱を招かない表現はドレインド (drained) である。

ターニング・ア・ロック

英語でターニング・ア・ロック(turning a lock、「閘門を回す」)とは、フルの閘門をエンプティにする、あるいはエンプティの閘門をフルにするということを指す。

ロック・ムーアリング

ロック・ムーアリング(lock mooring、「閘門繋留」)は、上流へ向かう船が閘門に進入する時によく使われる方法である。船が閘門扉のところに来た時に片側のよどみに向けて船を進め、閘門内の水の量が減少するにつれて水流により船がよどみから閘門扉の正面へと押し出される。これにより、閘門扉の正面に船を正確に誘導する苦労をしなくて済むようになる。

閘門の実例

日本の閘門

ファイル:Arakawa lockgate Japan 1.JPG
荒川ロックゲート(手前が荒川、奥が旧中川)

日本にも数多くの閘門が存在し、いまも稼働している。明治から戦前に完成した閘門は、重要文化財産業遺産に指定されているものも多い。

非常に大規模な閘門

世界最大の運河閘門は、ベルギーアントウェルペンにあるBerendrecht閘門である。全長500メートル(1,640フィート)、幅68メートル(223フィート)、閘程13.5メートル、4つの引揚式閘門扉を備えている。閘門のサイズは、設計上の運用閘程の違いを考慮せずに比較することはできない。例えば、ローヌ川Bollène閘門は最低23メートルの閘程があり、アゼルバイジャンオスケメン閘門は42メートルの閘程がある。閘門の総水量は長さ×幅×閘程で計算される。階段形閘門はなされる有効な仕事に対して必要とされる総水量を削減するために用いられる。有効な仕事は、船の重量と持ち上げられる高さに関係している。船が下がる時には、消費された水が失った位置エネルギーが考慮される。閘門の代替物としては、アンダートン船舶昇降機 (Anderton Boat Lift) や、ベルギーのStrépy-Thieu boat liftなどでは、水の消費を主要なエネルギー源としては用いず、電動機によって駆動されて水の消費を最小限にするように設計されている。

ミシシッピ川にある29の閘門は、典型的には600フィート(180メートル)の長さで、一方タグボートの組み合わせは、15隻の艀と1隻のタグボートで全長1,200フィート(360メートル)にもなる。この場合、一部の艀を切り離して閘門に入れて、閘門の弁を部分的に開けることで水流を作り出して動力のない艀を閘門から押し出し、後から閘門を通過してくるタグボートと艀の組み合わせと再結合するという手順で通過する。通過に1時間半ほどの時間が掛かる。

ハイラム・M・チッテンデン閘門

2004年11月、ハイラム・M・チッテンデン閘門(Hiram M. Chittenden Locks)の1つが、下に示した写真のように保守のために完全に空にされた。これは閘門の底の不透明な水のない状態で閘門の仕組みを見るよい機会となった。参考として、一番左の写真は、タグボートと砂や砂利を載せた艀が閘門扉の開くのを待っている、運用中の閘門を示している。この写真の左下には、閘門扉が開いた時に扉の収まる窪みが側壁に見られる。

この閘門には3組の閘門扉があり、閘門の両端に1つずつと中央に1つあり、閘門の長さ全部を必要としない時は中央のものを使うことで水を節約することができる。左から2番目の写真には底を歩いている人が映っており、この閘門の巨大さが分かる。閘門扉の写真には、底の両側に沿って閘渠の口が一列に並んでいるのが見える。閘門に重力によって流れ込み、流れ出す水はこの給排水管を通っている。閘門を満たし、あるいは空にするためには15分ほど掛かる。

歴史と発展

ダムと堰

古代には、河川交通が一般的であったが、河川にはもっとも小さな船でもなければ運ぶことが困難なほど浅い場所がしばしばあった。古代の人々は、ダムを建設して川の水位を上げることで、より大きな船を運航できるようになることを発見した。ダムの背後の水は、ダムの上を水がこぼれ落ちて堰になるところまで深くなる。そして大きな船を運航できるくらい水深が深くなる。このダム構造物は川に沿って、十分な水深が確保できるまで繰り返し造られた。

フラッシュ・ロック

しかしながら、これは船を水の段差を越えてどうやって移動させるかという問題を生み出した。初期にはフラッシュ・ロック(Flash lock)という粗雑なやり方でこれに対処した。フラッシュ・ロックはダムに小さな裂け目を作り、それを素早く開けたり閉めたりするものである。イングランドのテムズ川では、裂け目に垂直な柱を立てて、これに裂け目を塞ぐ板を置いていた。

裂け目が開けられると、水がどっと流れ出し、下る方向の船が水流によって引き出され、逆に上る方向の船は人が引っ張ったりウィンチを使ったりして流れに逆らって上った。船が通過すると裂け目はすぐに塞がれた。これは、奔流を作り出して岸に乗り上げている船を離岸させるためにも使われ、その名前の由来となった。

この仕組みは特に古代の中国でよく使われ、世界中の他の多くの地域でも見られた。しかしこの方法は危険で、多くの船が奔流によって沈んでしまった。この方法では必然的に堰の上流の水位の低下をもたらすために、水流に頼っていた製粉業者にとっては不評であった。これは法的にも物理的にも、川の流れを船の航行に使いたい側と製粉に使いたい側とで紛争を引き起こし、水が不足すると河川航行は停止されることになった。中国やイングランドでは、主としてこの紛争が原因で、少ない水の消費で航行ができるパウンド・ロックが適用されることになった。

ストーンチ

より洗練された装置は、ストーンチ (staunch) とかウォーター・ゲート (water gate) と呼ばれるもので、水門かマイター・ゲートの対でできていて、川の水位が低い時は閉鎖して水圧により閉めたままにしておくことができ、水位が低い時でも上流の浅い場所で船を浮かせることができるようにする。しかしながら、船が通過する時には上流側の水は排水管など何らかの補助装置により前もって抜く必要がある。製粉用の堰が通過すべき障害である時にはこの方法は用いられなかった。

パウンド・ロック

ファイル:Replica sluis in Botterbeek P3260262.JPG
オランダLankheetウォーター・パークに作られた、初期のパウンド・ロックの模型

ストーンチの自然な拡張は、上流側に水門を追加して、船が通過する時にそこだけ空にすれば済むようにすることである。この方式の閘門はパウンド・ロックと呼ばれ、古代の中国や中世のヨーロッパ、間接的な証拠によればローマ帝国でも使われていた可能性がある[33]。言葉の変化について注意すれば、イギリスの運河では、閘門の間の運河の区間のことをパウンドと呼ぶ。

水利用

閘門を使うことの主な問題は、1回の満水-空水のサイクルを繰り返すごとに、閘室1杯分の水(何万ガロンから何十万ガロンにもなる)が下流に放流されることである。簡単に言えば、ちょうど船に適した大きさの閘門を持つ運河で、船が最上流部から最下流部へ航行する際には、その船旅に閘室1杯分の水を伴っていることになる。反対方向へ航行する船もまた、閘室1杯分の水を上流側から下流側へ移動させる。運河が干上がってしまうのを防ぐためには、水が下流に放流されていく速度で常に水を運河最上流部へ補給できることを何らかの手段で保証しなくてはならない。これは当然ながら、河川水運に比べると分水界を越える人工的な運河により大きな問題となる。

設計

運河を計画する際には、設計者は最高地点に大きな貯水池か、異なる水源から水を導く人工水路、湧き水や川ができるだけくるように試みる。

汲み上げ

水の消費量に見合う自然の水補給量が得られないことが明らかな場合や、予想外の干ばつに備えるために、設計者は水を上流部へ汲み上げられるように計画することがある。当然ながらこうした対策は、設計の失敗が明らかになったり、予想以上の交通量の増加があったり、雨が不足したりといった場合に後から取られる事もある。より小規模には、このような汲み上げがある特定の場所で行われる。ケネット・アンド・エイボン運河では水を常にリサイクルしている閘門がある。

節水装置

ファイル:Side pond Atherstone Locks.jpg
コヴェントリー運河 (Coventry Canal) のエイサーストーン (Atherstone) にある使われなくなった節水装置の池

テンプレート:Double image aside 水を節約する方法として採られる方法が、閘門の上流区と下流区の中間に節水装置と呼ばれるため池を造ることである。このため池は、船が下流に向かう時に吐き出される水を蓄え、次に船が上流へ向かう時に閘室へ吐き出す。これにより1回の充排水サイクルで水が下流へ放流される量を減らすことができる。

右の図では節水装置の水の流れを示している。この閘門には節水装置のため池が3つあり、上からA、B、Cとなっている。船が上流から下流へ向かう場合、これらのため池は空の状態である。閘室に船が入り、閘室内の水を下流へ流すときに、まず図の1の部分の水をAに流し込み、水位が下がってくると次に2の部分の水をBへ、さらに3の部分の水をCへ流す。最後の4と5の部分は下流区へ放流する。この後下流から上流へ向かう船が来たときには、Cのため池の水をまず閘室内に流し、続いてBの水を、そしてAの水を流し込む。最後の1と2の部分にだけ上流区からの水を入れる。これによってこの例では、1回のサイクルで必要とされる水を5分の2に減少させることができる。この過程でも常に水は上から下へ重力にしたがって流れるのみで、揚水は必要としていない。

例えば、1919年から1928年に掛けてドイツハノーファーに建設されたヒンデンブルク閘門 (Hindenburg-lock) では、全長225メートルの2つの閘室を持ち、1回の充排水サイクルで42,000立方メートルの水を消費する。10個のため池を持つ節水装置を使うことにより、10,500立方メートルの消費量で済むようになる。

イングランドの運河では、このため池はサイド・パウンド (side pound) と呼ばれ、これを操作する装置はしばしば赤く塗られている。これが有名な言葉、「赤の後に白を使えば大丈夫、白の後に赤を使うとあなたは死ぬ」 (Red before white, you're alright; white before red, you're dead) の元になっている。ただしこの言葉にある「死ぬ」ということは、機構自体の本質的な問題を指しているのではなく、(水を浪費してしまうことで)閘門管理者の怒りを招くということを指している。中間の運河区が短いフライト・ロックの中には、運河区が空になってしまわないように保証するため池とするために、脇に運河区を延長してあるものがある。この拡張された中間運河区は、しばしばサイド・パウンドと混同される。 テンプレート:-

閘門の代わりとなるもの

上述した、迂回・掘割・高架などの静的な方法だけでなく、巧妙な動的な解決方法もたくさんある。多くはボート・リフトやインクラインといった装置の派生形である。これらは建設にも運用にもより多額の費用が掛かるが、高速で水の消費が少ない。

インクライン

のような構造物に水を入れてそこに艀を浮かべ、レールに構造物を載せて坂を上下し水路と水路を結ぶのがインクライン (inclined plane) である。構造物に水を入れていない方式のものは後述する。

箱に水を入れている場合、アルキメデスの原理により、艀の重さに関わらず、そして艀を載せていなくて水だけで一杯になっている場合でも、常に箱全体の重さは同じになることが保証される。これにより、錘を取り付けたりもう1つの箱を使ったりしてカウンターウェイトにすることが容易である。動力は蒸気力、水圧、あるいは上から下ろすカウンターウェイト側の箱に上の水路から余分に水を入れるといった手段による。

イギリスには現在稼動しているインクラインは存在しないが、グランド・ユニオン運河のレスター支線のレスターシャーにある、フォクストン閘門に残存物がある。このインクラインはフライト・ロックに置き換えられたが、これを復元する計画がある。

引き上げ船台

ファイル:Big chute acansino.jpg
カナダ、オンタリオ州のトレント-セバーン水路にあるビッグ・チュート引き上げ船台(Big Chute Marine Railway

引き上げ船台 (marine railway、patent slip)は、レールに沿って船を坂を越えて上げ下ろしするという点でインクラインとよく似ている。しかし、引き上げ船台では水を入れた箱ではなく、水のない台枠などに船を載せて運ぶ。保守作業のために水から船を引き上げるために用いるものと同じ原理である。

使う時には、水の中に沈められている輸送用台枠に船が進入する。船体下のスリングを使って船が台枠に固定され、台枠がケーブルで引っ張られて水から出て坂を上っていく。坂の頂点では、上流側の水路に台枠が下ろされ、船が解放される。船は水に浮かんでいないので、アルキメデスの原理は適用されず、台枠上の重量は変化して、カウンターウェイトを利用することはより難しくなる。

カナダ、オンタリオ州のトレント-セバーン水路にあるビッグ・チュート引き上げ船台 (Big Chute Marine Railway) のように、従来方式のフライト・ロックが計画されていた場所に、引き上げ船台が一時的な手段として建設されたことがある。ビッグ・チュートやその他のいくつかの場合、閘門は結局建設されず、引き上げ船台が恒久的に使われ続けている。

日本の琵琶湖疏水で、蹴上および伏見のインクラインで採用されたのは、こちらの形式である。蹴上の設備は一部が形態保存されている。 テンプレート:-

ボート・リフト

世界で最初の回転式ボート・リフト (boat lift) である、ファルカーク・ホイールは、ユニオン運河とフォース・アンド・クライド運河 (Forth and Clyde Canal) を修復する上で最重要項目となった。劇的な「ホイール」は、かつて双方の運河を結び1930年に埋め戻されたフライト・ロックを代替する21世紀の解決策を示した。フォールカーク・ホイールは、新しい閘門を設計するコンペで勝った設計であった。もともとの階段形閘門で運航されていた時に比べ、ホイールを使った船旅では100フィートの高さをわずか数分で移動できるようになった。

ビクトリア朝時代に世界で最初に建設された垂直ボート・リフトである、トレント・アンド・マージー運河とチェシャーのウィーバー川 (River Weaver) を結ぶ、アンダートンボート・リフトは、近年修理されている。世界で一番高いボート・リフトであるベルギーのStrépy-Thieu boat liftは、1,350トンの船を73.15メートル上げ下げする。

ケーソン・ロック

ファイル:Caisson lockenglish.svg
ケーソン・ロックの運用

1800年頃、イングランドのサマーセット・コール運河 (Somerset Coal Canal) にケーソン・ロック (Caisson lock) を使うことが、ロバート・ウェルドン(Robert Weldon)によって提案された。この水中リフトは、閘室の長さが80フィート、深さが60フィートで、中に艀を運べる大きさの完全に密封された木製の箱が収められていた。この箱がプールの中を60フィート(18.2メートル)上下する。避けられない水漏れを除けば、閘室内から水が出て行くことはなく、運用することによる水の消費はない。その代わりに、船は箱に進入してドアを閉めて密封し、箱自体が水中を上下する。閘室の底に箱が到達した時、箱は60フィートの水の底にあり、およそ3気圧の水圧が掛かることになる。この閘門の1つはプリンス・リージェント(摂政、後のジョージ4世)に披露するために建設されたが、多くの技術的な問題があり、サマーセット・コール運河に実際に用いられることはなかった[34][35]。しかしながら、1817年頃、リージェンツ運河 (Regents Canal) の、ロンドンの北のこんにちカムデン閘門 (Camden Lock) のある位置にこのケーソン・ロックが建設された。ここでも水の補給問題が動機となった。サマーセットの例に比べれば水位差はずっと小さかったものの、このシステムは間もなく通常方式の閘門に置き換えられた[36]。商業的に成功したケーソン・ロックは今までのところ存在していない。 テンプレート:-

ダイアゴナル・ロック

この新しいダイアゴナル・ロック(diagonal lock、「対角閘門」)という閘門の設計は、まだどの水路にも設置されていない。この提案は、運ぼうとする船に合わせられた大きさのコンクリートで造られた長いチューブを傾斜に沿って上流側と下流側を結ぶように建設する。チューブの下流側には強力な防水ドアを備え、上流側にはチューブの奥側の壁から船の長さ分だけ離れた位置に通常の水門を備えている。船の上下はチューブに上流側から水を流し込み、あるいは流しだすことで行われる。船は、ガイド用のチューブの形に合わせられた浮きやポンツーンと一緒に水の表面に浮いており、チューブの表面からの距離を保って浮くようになっている。メインのチューブから配管されているサイド・パウンドが協力して水を節約する仕組みになっている。従来のフライト・ロックや階段形閘門を置き換えることで、かなりの時間節約となることが期待されている。信頼性に疑問のあるケーソン・ロックの設計と比べて、水中に潜るケーソンの中に船を入れて運ばないというところが違っている。

ダイアゴナル・ロック・アドバイザリー・グループ (Diagonal Lock Advisory Group) がイギリスにおいて、新しい水路や従来の運河の修復の両方で、この新しい仕組みを設置できる場所をいくつかイギリスで発見している[37]。ランカスター運河 (Lancaster Canal) のケンダル (Kendal) への修復や、グランド・ユニオン運河のベドフォード (Bedford) とミルトン・キーンズ (Milton Keynes) の間の新しく提案されている支線などで計画が検討されている。

組み合わせのシステム - 三峡ダム

ファイル:TGDModelShipLocks.jpg
三峡ダムの模型、5段の閘門が真ん中にあり、左側に船舶用エレベーターがある

中国の長江にある三峡ダムでは、2つの5段階段形閘門がある。これに加えて1回の動作で3000トンの船を垂直に動かすことのできる船舶用エレベーターが計画されている。 テンプレート:-

閘門の大きさによる船型の名前

閘門により通航可能な船の最大サイズが制約されるため、重要な運河が標準的な船型の名前となっている。

脚注

テンプレート:脚注ヘルプ テンプレート:Reflist

参考文献

関連項目

テンプレート:Sister

外部リンク

  • 『河川工学』pp.294 - 296
  • 『水門・樋門・閘門の設計』p.171
  • 『ロック(閘門)』pp.14 - 15
  • 4.0 4.1 4.2 『河川工学』pp.294 - 296
  • 5.0 5.1 『ロック(閘門)』p.2
  • 『水門・樋門・閘門の設計』p.157
  • 『河川工学』p.298
  • 『ロック(閘門)』pp.13 - 14
  • 『ロック(閘門)』pp.43 - 45
  • 『ロック(閘門)』pp.125 - 127
  • 『ロック(閘門)』pp.56 - 59
  • テンプレート:Cite book
  • 『ロック(閘門)』pp.93 - 94
  • 『河川工学』p.320
  • 『ロック(閘門)』pp.120 - 121
  • 『ロック(閘門)』pp.122 - 123
  • 『ロック(閘門)』pp.123 - 124
  • 『ロック(閘門)』pp.110, 111, 118 - 120
  • 『ロック(閘門)』p.71
  • 『ロック(閘門)』pp.84 - 86
  • 『河川工学』pp.300 - 303
  • 『閘門(ロック)』p.72
  • 『河川工学』pp.332 - 334
  • 『ロック(閘門)p.72』
  • 『閘門(ロック)』p.127
  • 26.0 26.1 26.2 26.3 26.4 『水門・樋門・閘門の設計』pp.149 - 150
  • 27.0 27.1 27.2 『河川工学』p.296
  • Birmingham's Canals, Ray Shill, 1999, 2002, ISBN 0-7509-2077-7
  • テンプレート:Cite web
  • テンプレート:Cite web
  • テンプレート:Cite web
  • テンプレート:Cite book
  • Frank Gardner Moore "Three Canal Projects, Roman and Byzantine." American Journal of Archaeology, 54, (1950), 97-111 (99)
  • テンプレート:Cite web
  • テンプレート:Cite web
  • Faulkner, Alan (2005): The Regent’s Canal: London’s Hidden Waterway. Waterways World Ltd. ISBN 1-870002-59-8.
  • テンプレート:Citation