バイオマス

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索

テンプレート:出典の明記

テンプレート:再生可能エネルギー

バイオマス (biomass) とは生態学で、特定の時点においてある空間に存在する生物bio-)の量を、物質の量(mass)として表現したものである。通常、質量あるいはエネルギー量で数値化する。日本語では生物体量、生物量の語が用いられる。植物生態学などの場合には現存量(standing crop)の語が使われることも多い。転じて生物由来の資源を指すこともある。バイオマスを用いた燃料は、バイオ燃料(biofuel)またはエコ燃料 (ecofuel) と呼ばれている。

生態学におけるバイオマス

生態学、特に群集生態学生態系生態学において、バイオマスとは特定地域に生息する生物の総量、あるいはその中の群ごとの総量を指し、訳語としては生物量、あるいは現存量を使う。むしろ訳語を用いることの方が多い。

一般には単位面積あたりの該当生物の乾重量で表す。単位面積あたりの現存量を生物の栄養段階に分けて表すと、階層の低いものほど大きく、高いものほど小さくなる。これを生態ピラミッドという。

産業資源としてのバイオマス

枯渇性資源ではない、現生生物体構成物質起源の産業資源をバイオマスと呼ぶ。新技術として乾留ガス発電を用いたエネルギー利用が脚光を浴びている。日本政府が定めた「バイオマス・ニッポン総合戦略」では、「再生可能な、生物由来の有機性資源で化石資源を除いたもの」と定義されている[1]

バイオマスの特徴

カーボンニュートラル
バイオマスは有機物であるため、燃焼させると二酸化炭素が排出される。しかしこれに含まれる炭素は、そのバイオマスが成長過程で光合成により大気中から吸収した二酸化炭素に由来する。そのため、バイオマスを使用しても全体として見れば大気中の二酸化炭素量を増加させていないと考えてよいとされる。この性質をカーボンニュートラルと呼ぶ。
石油などのいわゆる化石燃料に含まれる炭素もかつての大気中の二酸化炭素が固定されたものであると考えられているが、それらが生産されたのは数億年も昔のことであり、現在に限って言えばそれらを使用することは大気中の二酸化炭素を増加させている。従って、化石燃料についてはカーボンニュートラルであるとは言わない。
再生可能性
バイオマスエネルギーの源は、元を辿れば植物によって取り込まれた太陽エネルギーである。このため、正味でエネルギーが獲得できれば再生可能エネルギーである。

利用状況

1990年代以降、バイオマスは二酸化炭素削減(地球温暖化対策)、循環型社会の構築などの取り組みを通じて脚光を浴び、旧来のなどの利用に加え、バイオマスエタノールバイオディーゼルなど各種のバイオマス燃料の利用も拡大している[2]。しかしその一方で生産のための森林破壊食料との競合などの問題も指摘されており、より弊害の少ない技術の開発が進められているほか、技術水準に応じた規制も検討が進んでいる[3]

日本では、地方自治体環境保護団体などが注目している[4]。そもそも高度成長期以前の日本では、落葉糞尿肥料として利用していたほか、里山から得られる薪炭がエネルギーとして活用されてきた。石油起源の資材、燃料などへの置換により、顧みられることが少なくなったが、近年、廃棄物処理コストの高騰などから高度利用を模索する自治体が増えている。またRPS法(電気事業者による新エネルギー等の利用に関する特別措置法)施行に伴い、各電力会社では火力発電所での石炭間伐材等との混焼が進められており、実証試験の段階から本格実施へと移行している[5]

日本政府の取り組み

2002年平成14年)12月、循環型社会を目指す長期戦略「バイオマス・ニッポン総合戦略」を閣議決定。農林水産業からの畜産廃棄物木材工芸作物などの有機物からのエネルギーや生分解性プラスチックなどの生産、食品産業から発生する廃棄物、副産物の活用を進めており、「バイオマスタウン」等の構想がある。

しかしながら、2003年度から2008年度までに214事業が実施されているものの、効果があると判断されたのは全体の16%の35事業であり、総務省は事業改善を求めている[6]。2011年3月には総務省の報告書においてこれまでの政策の評価が行われ、バイオマス関連施設の約7割が赤字であるなど、厳しい状況にあることが指摘されている[7]。特に林地残材の98%、食品廃棄物や農作物非食用部の70%以上が活用されていないなどの課題が指摘されており、関係各省に対して利用促進の勧告が行われている[7]

主なバイオマス資源

利用形態

供給形態

利用上の留意点

収集コスト
地域内に広く分散していることが多く、収集・運搬・管理のコストがかかる。コストと温室効果ガス排出量を削減するためには効率的な収集が必要であり、大規模になるほどコストダウンが容易になるとされる[8]
エネルギー(熱量)
下水汚泥(脱水ケーキ)・木質(乾燥)・食品残渣・かす・わら屑などは、乾燥状態で4.8Mcal/kg(20MJ/kg)前後と灯油の半分程度であるが、ガス化した際のエネルギー変換率は70%と高いため、燃焼ガスへの利用に向いているテンプレート:要出典
含水比
水を多く含む場合、乾燥させるのにかかるエネルギーと燃料として取り出せるエネルギーとの関係が問題視される。アオサ昆布牛乳おから・糞尿類・生ごみは含水比が80%以上であり、乾燥工程が不要なメタン発酵での利用に向いている。なお、バイオエタノールの製造においては、生産される以上のエネルギーを消費しているケースがあるとされるテンプレート:要出典
食料とのトレードオフ
可食部を原料とするバイオマス利用は、食料生産と燃料生産とのトレードオフが懸念されている[9]。これは主にバイオエタノールにおいて指摘されているが、既に2007年の時点で穀物の値上がりの原因となっている。日本では飼料作物である米国産トウモロコシの値上げによる肉類の値上げなどが心配されているが、世界的には耕作における水資源の不足から、貧しい国における食糧危機が懸念されている。
非可食部のセルロース等を利用すれば食料とのトレードオフは発生しないため、政策的な規制等も含め、今後はそのような方向が模索されることが期待される[10]。また、セルロース系原料を効率的にエタノール等に変換する研究にも期待がもたれている[11]
耕地の確保
現時点では農地の大部分は食糧を確保するために利用されているが、これに加えてバイオマス燃料を収穫するための耕地が必要となれば、さらなる耕地の拡大が求められ、たとえば熱帯雨林伐採が進む恐れがある[12]。また、耕地の拡大により、世界的に不足が懸念されている水資源が一層枯渇する可能性が指摘されているテンプレート:要出典
加工コスト
木材チップなどはそのままエネルギーとして消費できるにもかかわらず、あえて加工して消費している例として、木質ペレットがある。山から切り出した材木や廃材は、比較的少ない手間で薪や木材チップに加工でき、薪ストーブやチップボイラーなどの燃料として利用することができる。これに対して木質ペレットは、化石燃料や電力を消費するプラントにおいて製造され、ペレットストーブの使用時には電気ファンによる送風などのための補助的なエネルギーが必要ではないことがわかった。

資材

脚注・参照資料

テンプレート:脚注ヘルプ テンプレート:Reflist

関連項目

外部リンク

  • 「バイオマス・ニッポン総合戦略」本文 1ページ - バイオマス・ニッポン - 農林水産省
  • NEDO海外レポート No.994、2007年2月7日
  • Technobahn、2008/1/15 05:18の記事
  • バイオマス情報ヘッドクォーター
  • 資源エネルギー庁が木質バイオマス混焼発電を推進(新エネルギー財団)
  • テンプレート:Cite web
  • 7.0 7.1 バイオマスの利活用に関する政策評価<評価結果及び勧告>、総務省、2011年3月
  • http://www.civil.miyazaki-u.ac.jp/~dyken/ronbun/ronbun/01baba.pdf
  • バイオ燃料用作物、無秩序栽培は生態系破壊…国連報告書 読売新聞、2008年(平成20年)5月4日。
  • 三菱総合研究所、バイオ燃料とライフサイクルアセスメント〜良いバイオ燃料、悪いバイオ燃料の選別〜、2007.12.25
  • " WiredVision、2006年2月8日の記事
  • 三菱総合研究所、バイオ燃料とライフサイクルアセスメント ~良いバイオ燃料、悪いバイオ燃料の選別(2)~、2008.3.7